汽车系统中多cpu多gpu行人检测的开放基准实现

Matina Maria Trompouki, Leonidas Kosmidis, N. Navarro
{"title":"汽车系统中多cpu多gpu行人检测的开放基准实现","authors":"Matina Maria Trompouki, Leonidas Kosmidis, N. Navarro","doi":"10.1109/ICCAD.2017.8203793","DOIUrl":null,"url":null,"abstract":"Modern and future automotive systems incorporate several Advanced Driving Assistance Systems (ADAS). Those systems require significant performance that cannot be provided with traditional automotive processors and programming models. Multicore CPUs and Nvidia GPUs using CUDA are currently considered by both automotive industry and research community to provide the necessary computational power. However, despite several recent published works in this domain, there is an absolute lack of open implementations of GPU-based ADAS software, that can be used for benchmarking candidate platforms. In this work, we present a multi-CPU and GPU implementation of an open implementation of a pedestrian detection benchmark based on the Viola-Jones image recognition algorithm. We present our optimization strategies and evaluate our implementation on a multiprocessor system featuring multiple GPUs, showing an overall 88.5 x speedup over the sequential version.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An open benchmark implementation for multi-CPU multi-GPU pedestrian detection in automotive systems\",\"authors\":\"Matina Maria Trompouki, Leonidas Kosmidis, N. Navarro\",\"doi\":\"10.1109/ICCAD.2017.8203793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern and future automotive systems incorporate several Advanced Driving Assistance Systems (ADAS). Those systems require significant performance that cannot be provided with traditional automotive processors and programming models. Multicore CPUs and Nvidia GPUs using CUDA are currently considered by both automotive industry and research community to provide the necessary computational power. However, despite several recent published works in this domain, there is an absolute lack of open implementations of GPU-based ADAS software, that can be used for benchmarking candidate platforms. In this work, we present a multi-CPU and GPU implementation of an open implementation of a pedestrian detection benchmark based on the Viola-Jones image recognition algorithm. We present our optimization strategies and evaluate our implementation on a multiprocessor system featuring multiple GPUs, showing an overall 88.5 x speedup over the sequential version.\",\"PeriodicalId\":126686,\"journal\":{\"name\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2017.8203793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

现代和未来的汽车系统包括几个先进的驾驶辅助系统(ADAS)。这些系统需要传统汽车处理器和编程模型无法提供的显著性能。使用CUDA的多核cpu和Nvidia gpu目前被汽车行业和研究社区认为可以提供必要的计算能力。然而,尽管最近在该领域发表了一些作品,但仍然绝对缺乏基于gpu的ADAS软件的开放实现,可用于对候选平台进行基准测试。在这项工作中,我们提出了一个基于Viola-Jones图像识别算法的行人检测基准的开放实现的多cpu和GPU实现。我们展示了我们的优化策略,并在具有多个gpu的多处理器系统上评估了我们的实现,结果显示,与顺序版本相比,总体速度提高了88.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An open benchmark implementation for multi-CPU multi-GPU pedestrian detection in automotive systems
Modern and future automotive systems incorporate several Advanced Driving Assistance Systems (ADAS). Those systems require significant performance that cannot be provided with traditional automotive processors and programming models. Multicore CPUs and Nvidia GPUs using CUDA are currently considered by both automotive industry and research community to provide the necessary computational power. However, despite several recent published works in this domain, there is an absolute lack of open implementations of GPU-based ADAS software, that can be used for benchmarking candidate platforms. In this work, we present a multi-CPU and GPU implementation of an open implementation of a pedestrian detection benchmark based on the Viola-Jones image recognition algorithm. We present our optimization strategies and evaluate our implementation on a multiprocessor system featuring multiple GPUs, showing an overall 88.5 x speedup over the sequential version.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信