数据驱动与模型驱动相结合的高光谱图像混合噪声去除新框架

Qiang Zhang, Fujun Sun, Q. Yuan, Jie Li, Huanfeng Shen, Liangpei Zhang
{"title":"数据驱动与模型驱动相结合的高光谱图像混合噪声去除新框架","authors":"Qiang Zhang, Fujun Sun, Q. Yuan, Jie Li, Huanfeng Shen, Liangpei Zhang","doi":"10.1109/IGARSS39084.2020.9323115","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel hyperspectral image (HSI) denoising method especially for mixed noise removal. The proposed method combines both data-driven with model-driven strategy via a deep spatio-spectral variational structure. The mixed noise estimation and removal are collaboratively derived through fusing the Bayesian spatio-spectral posterior and deep learning model. The framework can both utilize the logicality of traditional model-driven methods, and the high efficiency of data-driven methods for parameters optimizing. Simulated and actual experiments demonstrate that the presented method outperforms other existing methods for HSI mixed noise removal, on both reconstructing effects and time-consuming.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combined the Data-Driven with Model-Driven Stragegy: A Novel Framework for Mixed Noise Removal in Hyperspectral Image\",\"authors\":\"Qiang Zhang, Fujun Sun, Q. Yuan, Jie Li, Huanfeng Shen, Liangpei Zhang\",\"doi\":\"10.1109/IGARSS39084.2020.9323115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel hyperspectral image (HSI) denoising method especially for mixed noise removal. The proposed method combines both data-driven with model-driven strategy via a deep spatio-spectral variational structure. The mixed noise estimation and removal are collaboratively derived through fusing the Bayesian spatio-spectral posterior and deep learning model. The framework can both utilize the logicality of traditional model-driven methods, and the high efficiency of data-driven methods for parameters optimizing. Simulated and actual experiments demonstrate that the presented method outperforms other existing methods for HSI mixed noise removal, on both reconstructing effects and time-consuming.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9323115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的高光谱图像去噪方法,特别是对混合噪声的去噪。该方法通过深度空间谱变分结构,将数据驱动与模型驱动相结合。通过融合贝叶斯空间谱后验和深度学习模型,协同导出混合噪声的估计和去除。该框架既能利用传统模型驱动方法的逻辑性,又能利用数据驱动方法的高效性进行参数优化。仿真和实际实验表明,该方法在重建效果和耗时方面都优于现有的HSI混合噪声去除方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined the Data-Driven with Model-Driven Stragegy: A Novel Framework for Mixed Noise Removal in Hyperspectral Image
In this paper, we present a novel hyperspectral image (HSI) denoising method especially for mixed noise removal. The proposed method combines both data-driven with model-driven strategy via a deep spatio-spectral variational structure. The mixed noise estimation and removal are collaboratively derived through fusing the Bayesian spatio-spectral posterior and deep learning model. The framework can both utilize the logicality of traditional model-driven methods, and the high efficiency of data-driven methods for parameters optimizing. Simulated and actual experiments demonstrate that the presented method outperforms other existing methods for HSI mixed noise removal, on both reconstructing effects and time-consuming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信