基于分水岭分割和纹理统计特征的缺血性脑卒中识别

Mohammed Ajam, H. Kanaan, Lina el Khansa, M. Ayache
{"title":"基于分水岭分割和纹理统计特征的缺血性脑卒中识别","authors":"Mohammed Ajam, H. Kanaan, Lina el Khansa, M. Ayache","doi":"10.1109/ACIT47987.2019.8991060","DOIUrl":null,"url":null,"abstract":"The algorithm presented in this paper identifies the ischemic stroke from CT brain images by extracting the textural and statistical features. Our algorithm starts by preprocessing of our CT images, and then image enhancement is performed. The brain CT images are segmented by Marker Controlled watershed. We obtained the Grey Level Co-occurrence matrix (GLCM) to extract the textural and statistical features. The experimental results showed that the over-segmentation due to noise is resolved by Marker controlled watershed. The textural and statistical features showed that the values of contrast, correlation, standard deviation and variance of normal CT images are less than those of abnormal CT images (contains ischemic stroke), where the values of homogeneity, energy and mean are bigger in normal CT images than those of abnormal CT images.","PeriodicalId":314091,"journal":{"name":"2019 International Arab Conference on Information Technology (ACIT)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ischemic Stroke Identification by Using Watershed Segmentation and Textural and Statistical Features\",\"authors\":\"Mohammed Ajam, H. Kanaan, Lina el Khansa, M. Ayache\",\"doi\":\"10.1109/ACIT47987.2019.8991060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The algorithm presented in this paper identifies the ischemic stroke from CT brain images by extracting the textural and statistical features. Our algorithm starts by preprocessing of our CT images, and then image enhancement is performed. The brain CT images are segmented by Marker Controlled watershed. We obtained the Grey Level Co-occurrence matrix (GLCM) to extract the textural and statistical features. The experimental results showed that the over-segmentation due to noise is resolved by Marker controlled watershed. The textural and statistical features showed that the values of contrast, correlation, standard deviation and variance of normal CT images are less than those of abnormal CT images (contains ischemic stroke), where the values of homogeneity, energy and mean are bigger in normal CT images than those of abnormal CT images.\",\"PeriodicalId\":314091,\"journal\":{\"name\":\"2019 International Arab Conference on Information Technology (ACIT)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIT47987.2019.8991060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT47987.2019.8991060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出的算法通过提取脑CT图像的纹理特征和统计特征来识别脑缺血。我们的算法首先对CT图像进行预处理,然后进行图像增强。采用Marker - Controlled分水岭对脑CT图像进行分割。我们得到灰度共生矩阵(GLCM)来提取纹理和统计特征。实验结果表明,利用Marker控制的分水岭可以有效地解决噪声引起的过分割问题。纹理特征和统计特征表明,正常CT图像的对比度、相关性、标准差和方差值小于异常CT图像(含缺血性卒中),其中正常CT图像的均匀性、能量和平均值值大于异常CT图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ischemic Stroke Identification by Using Watershed Segmentation and Textural and Statistical Features
The algorithm presented in this paper identifies the ischemic stroke from CT brain images by extracting the textural and statistical features. Our algorithm starts by preprocessing of our CT images, and then image enhancement is performed. The brain CT images are segmented by Marker Controlled watershed. We obtained the Grey Level Co-occurrence matrix (GLCM) to extract the textural and statistical features. The experimental results showed that the over-segmentation due to noise is resolved by Marker controlled watershed. The textural and statistical features showed that the values of contrast, correlation, standard deviation and variance of normal CT images are less than those of abnormal CT images (contains ischemic stroke), where the values of homogeneity, energy and mean are bigger in normal CT images than those of abnormal CT images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信