基于RGPS和BTM的语义增强Web服务聚类方法

Fang Xie Fang Xie, Jing-Liang Chen Fang Xie, Yi Zhu Jing-Liang Chen, Hong-Yan Zheng Yi Zhu
{"title":"基于RGPS和BTM的语义增强Web服务聚类方法","authors":"Fang Xie Fang Xie, Jing-Liang Chen Fang Xie, Yi Zhu Jing-Liang Chen, Hong-Yan Zheng Yi Zhu","doi":"10.53106/160792642023072404012","DOIUrl":null,"url":null,"abstract":"\n In order to overcome the data sparsity problem in service description text and to improve the web service clustering quality, we propose a web service clustering method with semantic enhancement based on RGPS (Role-Goal-Process-Service) Framework and Bi-term Topic Model (BTM). First, we extend service description text’s feature according to RGPS meta-model framework. Also, we generate the service latent feature by BTM. Then, we employ K-means on the generated features. The results of experiments on service registry PWeb show that this method can get better clustering performance in purity and entropy. It is proved that this method has great efficiency compared with the baseline methods K-means, Agglomerative and LDA (Latent Dirichlet Allocation). This paper enhances the service clustering performance and creates foundation work for service organization and recommendation. \n \n","PeriodicalId":442331,"journal":{"name":"網際網路技術學刊","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Web Service Clustering Method with Semantic Enhancement Based on RGPS and BTM\",\"authors\":\"Fang Xie Fang Xie, Jing-Liang Chen Fang Xie, Yi Zhu Jing-Liang Chen, Hong-Yan Zheng Yi Zhu\",\"doi\":\"10.53106/160792642023072404012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In order to overcome the data sparsity problem in service description text and to improve the web service clustering quality, we propose a web service clustering method with semantic enhancement based on RGPS (Role-Goal-Process-Service) Framework and Bi-term Topic Model (BTM). First, we extend service description text’s feature according to RGPS meta-model framework. Also, we generate the service latent feature by BTM. Then, we employ K-means on the generated features. The results of experiments on service registry PWeb show that this method can get better clustering performance in purity and entropy. It is proved that this method has great efficiency compared with the baseline methods K-means, Agglomerative and LDA (Latent Dirichlet Allocation). This paper enhances the service clustering performance and creates foundation work for service organization and recommendation. \\n \\n\",\"PeriodicalId\":442331,\"journal\":{\"name\":\"網際網路技術學刊\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"網際網路技術學刊\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642023072404012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"網際網路技術學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642023072404012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了克服服务描述文本中的数据稀疏性问题,提高web服务聚类质量,提出了一种基于RGPS (Role-Goal-Process-Service)框架和双术语主题模型(BTM)的语义增强web服务聚类方法。首先,我们根据RGPS元模型框架扩展了服务描述文本的特征。并利用BTM生成服务潜在特征。然后,我们对生成的特征使用K-means。在服务注册表PWeb上的实验结果表明,该方法在纯度和熵方面都能获得较好的聚类性能。与K-means、Agglomerative和LDA (Latent Dirichlet Allocation)等基线方法相比,该方法具有很高的效率。提高了服务集群的性能,为服务组织和服务推荐奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Web Service Clustering Method with Semantic Enhancement Based on RGPS and BTM
In order to overcome the data sparsity problem in service description text and to improve the web service clustering quality, we propose a web service clustering method with semantic enhancement based on RGPS (Role-Goal-Process-Service) Framework and Bi-term Topic Model (BTM). First, we extend service description text’s feature according to RGPS meta-model framework. Also, we generate the service latent feature by BTM. Then, we employ K-means on the generated features. The results of experiments on service registry PWeb show that this method can get better clustering performance in purity and entropy. It is proved that this method has great efficiency compared with the baseline methods K-means, Agglomerative and LDA (Latent Dirichlet Allocation). This paper enhances the service clustering performance and creates foundation work for service organization and recommendation.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信