P. Caillard, F. Gillon, M. Hecquet, S. Randi, N. Janiaud
{"title":"电动汽车动力总成预设计的优化方法","authors":"P. Caillard, F. Gillon, M. Hecquet, S. Randi, N. Janiaud","doi":"10.1109/VPPC.2014.7007015","DOIUrl":null,"url":null,"abstract":"In this paper, a global optimization methodology is described to pre-design an electric vehicle powertrain in order to find the best compromises between components. The modeled system includes a transmission, an electric machine, an inverter and a battery pack. The challenge is to find the dedicated formulations, with the vehicle performance requirements, electric range, and cost calculation that include the whole system without exploding computational time. Bi-objective, range/costs, optimizations with performance constraints are performed to find the potential gain with the system model.","PeriodicalId":133160,"journal":{"name":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"An Optimization Methodology to Pre Design an Electric Vehicle Powertrain\",\"authors\":\"P. Caillard, F. Gillon, M. Hecquet, S. Randi, N. Janiaud\",\"doi\":\"10.1109/VPPC.2014.7007015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a global optimization methodology is described to pre-design an electric vehicle powertrain in order to find the best compromises between components. The modeled system includes a transmission, an electric machine, an inverter and a battery pack. The challenge is to find the dedicated formulations, with the vehicle performance requirements, electric range, and cost calculation that include the whole system without exploding computational time. Bi-objective, range/costs, optimizations with performance constraints are performed to find the potential gain with the system model.\",\"PeriodicalId\":133160,\"journal\":{\"name\":\"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC.2014.7007015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2014.7007015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Optimization Methodology to Pre Design an Electric Vehicle Powertrain
In this paper, a global optimization methodology is described to pre-design an electric vehicle powertrain in order to find the best compromises between components. The modeled system includes a transmission, an electric machine, an inverter and a battery pack. The challenge is to find the dedicated formulations, with the vehicle performance requirements, electric range, and cost calculation that include the whole system without exploding computational time. Bi-objective, range/costs, optimizations with performance constraints are performed to find the potential gain with the system model.