尺度空间中的低比特率图像编码

Xin Li
{"title":"尺度空间中的低比特率图像编码","authors":"Xin Li","doi":"10.1109/DCC.2002.999941","DOIUrl":null,"url":null,"abstract":"Scale-space representation has been extensively studied in the computer vision community for analyzing image structures at different scales. This paper borrows and develops useful mathematical tools from scale-space theory to facilitate the task of image compression. Instead of compressing the original image directly, we propose to compress its scale-space representation obtained by the forward diffusion with a Gaussian kernel at the chosen scale. The major contribution of this work is a novel solution to the ill-posed inverse diffusion problem. We analytically derive a nonlinear filter to deblur Gaussian blurring for 1D ideal step edges. The generalized 2D edge enhancing filter only requires the knowledge of local minimum/maximum and preserves the geometric constraint of edges. When combined with a standard wavelet-based image coder, the forward and inverse diffusion can be viewed as a pair of pre-processing and post-processing stages used to select and preserve important image features at the given bit rate. Experiment results have shown that the proposed diffusion-based techniques can dramatically improve the visual quality of reconstructed images at low bit rate (below 0.25bpp).","PeriodicalId":420897,"journal":{"name":"Proceedings DCC 2002. Data Compression Conference","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Low bit rate image coding in the scale space\",\"authors\":\"Xin Li\",\"doi\":\"10.1109/DCC.2002.999941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scale-space representation has been extensively studied in the computer vision community for analyzing image structures at different scales. This paper borrows and develops useful mathematical tools from scale-space theory to facilitate the task of image compression. Instead of compressing the original image directly, we propose to compress its scale-space representation obtained by the forward diffusion with a Gaussian kernel at the chosen scale. The major contribution of this work is a novel solution to the ill-posed inverse diffusion problem. We analytically derive a nonlinear filter to deblur Gaussian blurring for 1D ideal step edges. The generalized 2D edge enhancing filter only requires the knowledge of local minimum/maximum and preserves the geometric constraint of edges. When combined with a standard wavelet-based image coder, the forward and inverse diffusion can be viewed as a pair of pre-processing and post-processing stages used to select and preserve important image features at the given bit rate. Experiment results have shown that the proposed diffusion-based techniques can dramatically improve the visual quality of reconstructed images at low bit rate (below 0.25bpp).\",\"PeriodicalId\":420897,\"journal\":{\"name\":\"Proceedings DCC 2002. Data Compression Conference\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC 2002. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2002.999941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC 2002. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2002.999941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

尺度空间表示在计算机视觉界被广泛研究,用于分析不同尺度下的图像结构。本文从尺度空间理论中借鉴和发展了有用的数学工具来简化图像压缩的任务。我们不直接压缩原始图像,而是在选择的尺度上用高斯核压缩其前向扩散得到的尺度空间表示。这项工作的主要贡献是一个新的解不适定逆扩散问题。我们解析推导了一种非线性滤波器来消除一维理想阶跃边缘的高斯模糊。广义二维边缘增强滤波器只需要知道局部极小值/极大值,并保持边缘的几何约束。当与标准的基于小波的图像编码器相结合时,正向和反向扩散可以被视为一对预处理和后处理阶段,用于在给定的比特率下选择和保留重要的图像特征。实验结果表明,在低比特率(低于0.25bpp)下,基于扩散的图像重建技术可以显著提高图像的视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low bit rate image coding in the scale space
Scale-space representation has been extensively studied in the computer vision community for analyzing image structures at different scales. This paper borrows and develops useful mathematical tools from scale-space theory to facilitate the task of image compression. Instead of compressing the original image directly, we propose to compress its scale-space representation obtained by the forward diffusion with a Gaussian kernel at the chosen scale. The major contribution of this work is a novel solution to the ill-posed inverse diffusion problem. We analytically derive a nonlinear filter to deblur Gaussian blurring for 1D ideal step edges. The generalized 2D edge enhancing filter only requires the knowledge of local minimum/maximum and preserves the geometric constraint of edges. When combined with a standard wavelet-based image coder, the forward and inverse diffusion can be viewed as a pair of pre-processing and post-processing stages used to select and preserve important image features at the given bit rate. Experiment results have shown that the proposed diffusion-based techniques can dramatically improve the visual quality of reconstructed images at low bit rate (below 0.25bpp).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信