{"title":"序贯逻辑电路设计的片上固有演化方法","authors":"Fan Xiong, N. Rafla","doi":"10.1109/MWSCAS.2009.5236119","DOIUrl":null,"url":null,"abstract":"This paper focuses on the application of Virtual Reconfigurable Circuit (VRC) design methodology and intrinsic evolution for the design of small sequential circuits and their implementation on a single programmable chip with an embedded hardcore processor. The evolutionary algorithm is developed in software that runs on the embedded processor. Fitness function is calculated using hardware architecture and is used to guide the evolution process. This new method is applied to the development of a 3-bit sequence detector and the evolved architecture is implemented on a Xilinxtm Virtex-II pro device. Simulations were run on the evolved architecture and on the same circuit designed using conventional Hardware Descriptive Language (HDL). Both designs showed the same functional behavior. Synthesis results show that the new method can be used in successfully implementing small sequential circuits on a reconfigurable hardware environment.","PeriodicalId":254577,"journal":{"name":"2009 52nd IEEE International Midwest Symposium on Circuits and Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On-chip intrinsic evolution methodology for sequential logic circuit design\",\"authors\":\"Fan Xiong, N. Rafla\",\"doi\":\"10.1109/MWSCAS.2009.5236119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the application of Virtual Reconfigurable Circuit (VRC) design methodology and intrinsic evolution for the design of small sequential circuits and their implementation on a single programmable chip with an embedded hardcore processor. The evolutionary algorithm is developed in software that runs on the embedded processor. Fitness function is calculated using hardware architecture and is used to guide the evolution process. This new method is applied to the development of a 3-bit sequence detector and the evolved architecture is implemented on a Xilinxtm Virtex-II pro device. Simulations were run on the evolved architecture and on the same circuit designed using conventional Hardware Descriptive Language (HDL). Both designs showed the same functional behavior. Synthesis results show that the new method can be used in successfully implementing small sequential circuits on a reconfigurable hardware environment.\",\"PeriodicalId\":254577,\"journal\":{\"name\":\"2009 52nd IEEE International Midwest Symposium on Circuits and Systems\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 52nd IEEE International Midwest Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2009.5236119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 52nd IEEE International Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2009.5236119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-chip intrinsic evolution methodology for sequential logic circuit design
This paper focuses on the application of Virtual Reconfigurable Circuit (VRC) design methodology and intrinsic evolution for the design of small sequential circuits and their implementation on a single programmable chip with an embedded hardcore processor. The evolutionary algorithm is developed in software that runs on the embedded processor. Fitness function is calculated using hardware architecture and is used to guide the evolution process. This new method is applied to the development of a 3-bit sequence detector and the evolved architecture is implemented on a Xilinxtm Virtex-II pro device. Simulations were run on the evolved architecture and on the same circuit designed using conventional Hardware Descriptive Language (HDL). Both designs showed the same functional behavior. Synthesis results show that the new method can be used in successfully implementing small sequential circuits on a reconfigurable hardware environment.