二元分组数据幂变换模型估计的渐近性质

T. Hamasaki, M. Goto
{"title":"二元分组数据幂变换模型估计的渐近性质","authors":"T. Hamasaki, M. Goto","doi":"10.5183/JJSCS1988.18.1","DOIUrl":null,"url":null,"abstract":"We investigate the asymptotic properties of maximum likelihood estimates of the power-transformation model to bivariate grouped data discussed by Hamasaki and Goto (1998a). The previous works deal with the most elementary situations of bivariate and simple regressions. We consider the three situations, i.e., (i) both variables given in grouped form, (ii) only one variable given in grouped form and (iii) the response involving both grouped and ungrouped data. We also provide one example to illustrate the application of the proposed method.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"326 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ASYMPTOTIC PROPERTIES OF ESTIMATES OF THE POWER-TRANSFORMATION MODEL TO BIVARIATE GROUPED DATA\",\"authors\":\"T. Hamasaki, M. Goto\",\"doi\":\"10.5183/JJSCS1988.18.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the asymptotic properties of maximum likelihood estimates of the power-transformation model to bivariate grouped data discussed by Hamasaki and Goto (1998a). The previous works deal with the most elementary situations of bivariate and simple regressions. We consider the three situations, i.e., (i) both variables given in grouped form, (ii) only one variable given in grouped form and (iii) the response involving both grouped and ungrouped data. We also provide one example to illustrate the application of the proposed method.\",\"PeriodicalId\":338719,\"journal\":{\"name\":\"Journal of the Japanese Society of Computational Statistics\",\"volume\":\"326 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japanese Society of Computational Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5183/JJSCS1988.18.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS1988.18.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了Hamasaki和Goto (1998a)讨论的二元分组数据的幂变换模型的最大似然估计的渐近性质。前面的作品处理的是二元回归和简单回归的最基本情况。我们考虑了三种情况,即(i)两个变量都以分组形式给出,(ii)只有一个变量以分组形式给出,(iii)涉及分组和未分组数据的响应。我们还提供了一个例子来说明该方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASYMPTOTIC PROPERTIES OF ESTIMATES OF THE POWER-TRANSFORMATION MODEL TO BIVARIATE GROUPED DATA
We investigate the asymptotic properties of maximum likelihood estimates of the power-transformation model to bivariate grouped data discussed by Hamasaki and Goto (1998a). The previous works deal with the most elementary situations of bivariate and simple regressions. We consider the three situations, i.e., (i) both variables given in grouped form, (ii) only one variable given in grouped form and (iii) the response involving both grouped and ungrouped data. We also provide one example to illustrate the application of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信