基于外部调用依赖图相似性的恶意软件准确鲁棒分析

Cassius Puodzius, Olivier Zendra, Annelie Heuser, Lamine Noureddine
{"title":"基于外部调用依赖图相似性的恶意软件准确鲁棒分析","authors":"Cassius Puodzius, Olivier Zendra, Annelie Heuser, Lamine Noureddine","doi":"10.1145/3465481.3470115","DOIUrl":null,"url":null,"abstract":"Malware is a primary concern in cybersecurity, being one of the attacker’s favorite cyberweapons. Over time, malware evolves not only in complexity but also in diversity and quantity. Malware analysis automation is thus crucial. In this paper we present ECDGs, a shorter call graph representation, and a new similarity function that is accurate and robust. Toward this goal, we revisit some principles of malware analysis research to define basic primitives and an evaluation paradigm addressed for the setup of more reliable experiments. Our benchmark shows that our similarity function is very efficient in practice, achieving speedup rates of 3.30x and 354,11x wrt. radiff2 for the standard and the cache-enhanced implementations, respectively. Our evaluations generate clusters that produce almost unerring results - homogeneity score of 0.983 for the accuracy phase - and marginal information loss for a highly polluted dataset - NMI score of 0.974 between initial and final clusters of the robustness phase. Overall, ECDGs and our similarity function enable autonomous frameworks for malware search and clustering that can assist human-based analysis or improve classification models for malware analysis.","PeriodicalId":417395,"journal":{"name":"Proceedings of the 16th International Conference on Availability, Reliability and Security","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Accurate and Robust Malware Analysis through Similarity of External Calls Dependency Graphs (ECDG)\",\"authors\":\"Cassius Puodzius, Olivier Zendra, Annelie Heuser, Lamine Noureddine\",\"doi\":\"10.1145/3465481.3470115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware is a primary concern in cybersecurity, being one of the attacker’s favorite cyberweapons. Over time, malware evolves not only in complexity but also in diversity and quantity. Malware analysis automation is thus crucial. In this paper we present ECDGs, a shorter call graph representation, and a new similarity function that is accurate and robust. Toward this goal, we revisit some principles of malware analysis research to define basic primitives and an evaluation paradigm addressed for the setup of more reliable experiments. Our benchmark shows that our similarity function is very efficient in practice, achieving speedup rates of 3.30x and 354,11x wrt. radiff2 for the standard and the cache-enhanced implementations, respectively. Our evaluations generate clusters that produce almost unerring results - homogeneity score of 0.983 for the accuracy phase - and marginal information loss for a highly polluted dataset - NMI score of 0.974 between initial and final clusters of the robustness phase. Overall, ECDGs and our similarity function enable autonomous frameworks for malware search and clustering that can assist human-based analysis or improve classification models for malware analysis.\",\"PeriodicalId\":417395,\"journal\":{\"name\":\"Proceedings of the 16th International Conference on Availability, Reliability and Security\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th International Conference on Availability, Reliability and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3465481.3470115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465481.3470115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

恶意软件是网络安全的主要关注点,是攻击者最喜欢的网络武器之一。随着时间的推移,恶意软件不仅在复杂性上发展,而且在多样性和数量上也在发展。因此,恶意软件分析自动化是至关重要的。在本文中,我们提出了ecdg,一种更短的调用图表示,以及一种新的精确和鲁棒的相似函数。为了实现这一目标,我们重新审视了恶意软件分析研究的一些原则,以定义基本的原语和评估范式,以便建立更可靠的实验。我们的基准测试表明,我们的相似函数在实践中非常有效,实现了3.30倍和354.11倍wrt的加速率。Radiff2分别用于标准和缓存增强的实现。我们的评估产生的聚类产生几乎无误的结果——准确性阶段的均匀性得分为0.983——高度污染的数据集的边际信息损失——稳健性阶段的初始聚类和最终聚类之间的NMI得分为0.974。总的来说,ecdg和我们的相似函数为恶意软件搜索和聚类提供了自主框架,可以帮助基于人类的分析或改进恶意软件分析的分类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate and Robust Malware Analysis through Similarity of External Calls Dependency Graphs (ECDG)
Malware is a primary concern in cybersecurity, being one of the attacker’s favorite cyberweapons. Over time, malware evolves not only in complexity but also in diversity and quantity. Malware analysis automation is thus crucial. In this paper we present ECDGs, a shorter call graph representation, and a new similarity function that is accurate and robust. Toward this goal, we revisit some principles of malware analysis research to define basic primitives and an evaluation paradigm addressed for the setup of more reliable experiments. Our benchmark shows that our similarity function is very efficient in practice, achieving speedup rates of 3.30x and 354,11x wrt. radiff2 for the standard and the cache-enhanced implementations, respectively. Our evaluations generate clusters that produce almost unerring results - homogeneity score of 0.983 for the accuracy phase - and marginal information loss for a highly polluted dataset - NMI score of 0.974 between initial and final clusters of the robustness phase. Overall, ECDGs and our similarity function enable autonomous frameworks for malware search and clustering that can assist human-based analysis or improve classification models for malware analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信