GSN/sup /神经网络的训练算法

A. de Carvalho, D. Bisset, M. Fairhurst
{"title":"GSN/sup /神经网络的训练算法","authors":"A. de Carvalho, D. Bisset, M. Fairhurst","doi":"10.1109/CYBVIS.1996.629443","DOIUrl":null,"url":null,"abstract":"This paper presents and analyses distinct learning strategies which have been used by GSN/sup f/ architectures. Sharing the common feature of being one-shot learning, these strategies achieve different performances as key parameters are changed. These algorithms are evaluated against each other by taking into account the training time, saturation rates, learning conflict rates and recognition performance.","PeriodicalId":103287,"journal":{"name":"Proceedings II Workshop on Cybernetic Vision","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training algorithms for GSN/sup f/ neural networks\",\"authors\":\"A. de Carvalho, D. Bisset, M. Fairhurst\",\"doi\":\"10.1109/CYBVIS.1996.629443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents and analyses distinct learning strategies which have been used by GSN/sup f/ architectures. Sharing the common feature of being one-shot learning, these strategies achieve different performances as key parameters are changed. These algorithms are evaluated against each other by taking into account the training time, saturation rates, learning conflict rates and recognition performance.\",\"PeriodicalId\":103287,\"journal\":{\"name\":\"Proceedings II Workshop on Cybernetic Vision\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings II Workshop on Cybernetic Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBVIS.1996.629443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings II Workshop on Cybernetic Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBVIS.1996.629443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并分析了GSN/sup /体系结构中使用的不同学习策略。这些策略具有一次性学习的共同特点,但随着关键参数的变化,它们的学习效果也不同。这些算法通过考虑训练时间、饱和率、学习冲突率和识别性能来相互评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training algorithms for GSN/sup f/ neural networks
This paper presents and analyses distinct learning strategies which have been used by GSN/sup f/ architectures. Sharing the common feature of being one-shot learning, these strategies achieve different performances as key parameters are changed. These algorithms are evaluated against each other by taking into account the training time, saturation rates, learning conflict rates and recognition performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信