单电子神经网络学习电路的设计

M. Ueno, T. Oya
{"title":"单电子神经网络学习电路的设计","authors":"M. Ueno, T. Oya","doi":"10.23919/SNW.2019.8782949","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a new single-electron (SE) circuit that can learn after being fabricated. We designed it whose result changes with the number of signals arriving at the output. To design it, we designed an SE flip flop circuit and an SE switch circuit to control signal propagation. The circuit can be used as a learning circuit. We performed character recognition as operation test of the proposed circuit. The results show that our SE neural network using a learning circuit can simultaneously learn multiple types of input patterns.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"07 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of learning circuit for single-electron neural networks\",\"authors\":\"M. Ueno, T. Oya\",\"doi\":\"10.23919/SNW.2019.8782949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a new single-electron (SE) circuit that can learn after being fabricated. We designed it whose result changes with the number of signals arriving at the output. To design it, we designed an SE flip flop circuit and an SE switch circuit to control signal propagation. The circuit can be used as a learning circuit. We performed character recognition as operation test of the proposed circuit. The results show that our SE neural network using a learning circuit can simultaneously learn multiple types of input patterns.\",\"PeriodicalId\":170513,\"journal\":{\"name\":\"2019 Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"07 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SNW.2019.8782949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2019.8782949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的单电子(SE)电路,可以在制作完成后进行学习。我们设计了它的结果随着到达输出端的信号数量的变化而变化。在设计中,我们设计了一个SE触发器电路和一个SE开关电路来控制信号的传播。该电路可作为学习电路使用。我们对所提出的电路进行了字符识别操作测试。结果表明,采用学习电路的神经网络可以同时学习多种类型的输入模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of learning circuit for single-electron neural networks
In this paper, we proposed a new single-electron (SE) circuit that can learn after being fabricated. We designed it whose result changes with the number of signals arriving at the output. To design it, we designed an SE flip flop circuit and an SE switch circuit to control signal propagation. The circuit can be used as a learning circuit. We performed character recognition as operation test of the proposed circuit. The results show that our SE neural network using a learning circuit can simultaneously learn multiple types of input patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信