快速自适应交叉管张量近似

S. Ahmadi-Asl, A. Phan, A. Cichocki, Ashish Jha, Anastasia Sozykina, Jun Wang, I. Oseledets
{"title":"快速自适应交叉管张量近似","authors":"S. Ahmadi-Asl, A. Phan, A. Cichocki, Ashish Jha, Anastasia Sozykina, Jun Wang, I. Oseledets","doi":"10.1109/SSP53291.2023.10208018","DOIUrl":null,"url":null,"abstract":"This paper deals with proposing a new efficient adaptive algorithm for the computation of tensor SVD (t-SVD). The proposed algorithm can estimate the tubal-rank of a given third-order tensor and the corresponding low tubal-rank approximation given an approximation tolerance. The main advantage of the proposed algorithm is using only a part of lateral and a horizontal slices at each iteration in its computations. So, it is applicable for decomposing large-scale data tensors. Simulations on synthetics and real-world datasets are provided and in some cases, we achieve more than one order of magnitude acceleration compared with the classical truncated t-SVD. It is shown that the proposed approach can potentially be used in deep learning and internet of things applications.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Adaptive Cross Tubal Tensor Approximation\",\"authors\":\"S. Ahmadi-Asl, A. Phan, A. Cichocki, Ashish Jha, Anastasia Sozykina, Jun Wang, I. Oseledets\",\"doi\":\"10.1109/SSP53291.2023.10208018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with proposing a new efficient adaptive algorithm for the computation of tensor SVD (t-SVD). The proposed algorithm can estimate the tubal-rank of a given third-order tensor and the corresponding low tubal-rank approximation given an approximation tolerance. The main advantage of the proposed algorithm is using only a part of lateral and a horizontal slices at each iteration in its computations. So, it is applicable for decomposing large-scale data tensors. Simulations on synthetics and real-world datasets are provided and in some cases, we achieve more than one order of magnitude acceleration compared with the classical truncated t-SVD. It is shown that the proposed approach can potentially be used in deep learning and internet of things applications.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10208018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的有效的张量SVD (t-SVD)自适应计算算法。该算法可以估计给定三阶张量的管秩,并在给定近似容差的情况下估计相应的低管秩近似。该算法的主要优点是在每次迭代中只使用一部分横向切片和一个水平切片。因此,它适用于大规模数据张量的分解。在合成和现实世界数据集上进行了模拟,在某些情况下,与经典截断t-SVD相比,我们实现了一个数量级以上的加速。结果表明,该方法可用于深度学习和物联网应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Adaptive Cross Tubal Tensor Approximation
This paper deals with proposing a new efficient adaptive algorithm for the computation of tensor SVD (t-SVD). The proposed algorithm can estimate the tubal-rank of a given third-order tensor and the corresponding low tubal-rank approximation given an approximation tolerance. The main advantage of the proposed algorithm is using only a part of lateral and a horizontal slices at each iteration in its computations. So, it is applicable for decomposing large-scale data tensors. Simulations on synthetics and real-world datasets are provided and in some cases, we achieve more than one order of magnitude acceleration compared with the classical truncated t-SVD. It is shown that the proposed approach can potentially be used in deep learning and internet of things applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信