均匀平滑vs均匀凸性

K. Goebel, S. Prus
{"title":"均匀平滑vs均匀凸性","authors":"K. Goebel, S. Prus","doi":"10.1093/oso/9780198827351.003.0005","DOIUrl":null,"url":null,"abstract":"The aim of the chapter is to present duality between uniform convexity and uniform smoothness. Lindenstrauss formulas relating moduli of convexity and smoothness are discussed as the main tool. A section deals with the notion of noncreasy and uniformly noncreasy spaces.","PeriodicalId":417325,"journal":{"name":"Elements of Geometry of Balls in Banach Spaces","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform smoothness vs uniform convexity\",\"authors\":\"K. Goebel, S. Prus\",\"doi\":\"10.1093/oso/9780198827351.003.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the chapter is to present duality between uniform convexity and uniform smoothness. Lindenstrauss formulas relating moduli of convexity and smoothness are discussed as the main tool. A section deals with the notion of noncreasy and uniformly noncreasy spaces.\",\"PeriodicalId\":417325,\"journal\":{\"name\":\"Elements of Geometry of Balls in Banach Spaces\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elements of Geometry of Balls in Banach Spaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198827351.003.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elements of Geometry of Balls in Banach Spaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198827351.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章的目的是呈现均匀凸性和均匀光滑性之间的对偶性。作为主要工具,讨论了有关凸模和平滑模的Lindenstrauss公式。一节讨论了非皱缩空间和一致非皱缩空间的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform smoothness vs uniform convexity
The aim of the chapter is to present duality between uniform convexity and uniform smoothness. Lindenstrauss formulas relating moduli of convexity and smoothness are discussed as the main tool. A section deals with the notion of noncreasy and uniformly noncreasy spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信