基于自适应回溯匹配追踪的雷达回波信号稀疏恢复

S. Narayanan, S. K. Sahoo, A. Makur
{"title":"基于自适应回溯匹配追踪的雷达回波信号稀疏恢复","authors":"S. Narayanan, S. K. Sahoo, A. Makur","doi":"10.1109/RADARCONF.2015.7411904","DOIUrl":null,"url":null,"abstract":"Compressive Sensing (CS) combines signal sampling and signal compression. CS directly acquires a signal provided it is either sparse by itself or sparse in some transform domain. In radar applications, it is not always possible to sample the radar signal ideally. Further, consecutive radar echo signals show some correlation which may be exploited. In this work, we start by modelling the radar echo signal and adopting a sensing mechanism to acquire it. For CS reconstruction, we propose Adaptive Backtracking Matching Pursuit which makes use of the `partially known support' to reconstruct the sparse version of radar echo signal.","PeriodicalId":267194,"journal":{"name":"2015 IEEE Radar Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sparse recovery of radar echo signals using Adaptive Backtracking Matching Pursuit\",\"authors\":\"S. Narayanan, S. K. Sahoo, A. Makur\",\"doi\":\"10.1109/RADARCONF.2015.7411904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive Sensing (CS) combines signal sampling and signal compression. CS directly acquires a signal provided it is either sparse by itself or sparse in some transform domain. In radar applications, it is not always possible to sample the radar signal ideally. Further, consecutive radar echo signals show some correlation which may be exploited. In this work, we start by modelling the radar echo signal and adopting a sensing mechanism to acquire it. For CS reconstruction, we propose Adaptive Backtracking Matching Pursuit which makes use of the `partially known support' to reconstruct the sparse version of radar echo signal.\",\"PeriodicalId\":267194,\"journal\":{\"name\":\"2015 IEEE Radar Conference\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADARCONF.2015.7411904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADARCONF.2015.7411904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

压缩感知(CS)是信号采样和信号压缩的结合。如果信号本身是稀疏的,或者在某个变换域中是稀疏的,则CS直接获取信号。在雷达应用中,并不总是能够理想地对雷达信号进行采样。此外,连续雷达回波信号具有一定的相关性,可以加以利用。在这项工作中,我们首先对雷达回波信号进行建模,并采用一种传感机制来获取它。对于CS重建,我们提出了自适应回溯匹配追踪,利用“部分已知支持”来重建雷达回波信号的稀疏版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse recovery of radar echo signals using Adaptive Backtracking Matching Pursuit
Compressive Sensing (CS) combines signal sampling and signal compression. CS directly acquires a signal provided it is either sparse by itself or sparse in some transform domain. In radar applications, it is not always possible to sample the radar signal ideally. Further, consecutive radar echo signals show some correlation which may be exploited. In this work, we start by modelling the radar echo signal and adopting a sensing mechanism to acquire it. For CS reconstruction, we propose Adaptive Backtracking Matching Pursuit which makes use of the `partially known support' to reconstruct the sparse version of radar echo signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信