胫骨前肌等距收缩时脑电图-肌电图一致性的力-时间特征

T. Igasaki, Kent Yamashita, Takeshi Ushijima
{"title":"胫骨前肌等距收缩时脑电图-肌电图一致性的力-时间特征","authors":"T. Igasaki, Kent Yamashita, Takeshi Ushijima","doi":"10.1109/BMEICON.2018.8609919","DOIUrl":null,"url":null,"abstract":"The coherence between electroencephalogram (EEG) and electromyogram (EMG) of the tibialis anterior (TA) muscle during isometric contraction is observed in the beta band (15 to 35 Hz). When the contraction force becomes stronger, the peak coherence frequency shifts to the gamma band (35 to 60 Hz). In contrast, based on the maintenance of contraction with the weak force, the peak coherence value increases. However, the manner in which coherence changes according to the maintenance of contraction with strong force remains unknown. In this study, five healthy male university students were directed to execute isometric contraction by dorsiflexion of their right ankle joint for 1 min with forces of 10 to 60% of the maximum voluntary contraction. During dorsiflexion, EEG and EMG of the TA muscle were performed. Then, the changes in coherence between EEG and EMG were examined, corresponding to the changes in contraction force and time course. In the majority of subjects, the peak coherence during the weak contraction force was observed in the beta band and lasted for 12 to 60 s. However, the peak coherence during the strong contraction force was observed in the gamma band only for the first 12 s. Subsequently, no significant coherence was observed. Therefore, muscle fatigue due to strong contraction forces and/or maintenance of the weak contraction force may have been observed as a different property of the peak coherence.","PeriodicalId":232271,"journal":{"name":"2018 11th Biomedical Engineering International Conference (BMEiCON)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Force-Temporal Characteristics of EEG-EMG Coherence During Isometric Contraction of the Tibialis Anterior Muscle\",\"authors\":\"T. Igasaki, Kent Yamashita, Takeshi Ushijima\",\"doi\":\"10.1109/BMEICON.2018.8609919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coherence between electroencephalogram (EEG) and electromyogram (EMG) of the tibialis anterior (TA) muscle during isometric contraction is observed in the beta band (15 to 35 Hz). When the contraction force becomes stronger, the peak coherence frequency shifts to the gamma band (35 to 60 Hz). In contrast, based on the maintenance of contraction with the weak force, the peak coherence value increases. However, the manner in which coherence changes according to the maintenance of contraction with strong force remains unknown. In this study, five healthy male university students were directed to execute isometric contraction by dorsiflexion of their right ankle joint for 1 min with forces of 10 to 60% of the maximum voluntary contraction. During dorsiflexion, EEG and EMG of the TA muscle were performed. Then, the changes in coherence between EEG and EMG were examined, corresponding to the changes in contraction force and time course. In the majority of subjects, the peak coherence during the weak contraction force was observed in the beta band and lasted for 12 to 60 s. However, the peak coherence during the strong contraction force was observed in the gamma band only for the first 12 s. Subsequently, no significant coherence was observed. Therefore, muscle fatigue due to strong contraction forces and/or maintenance of the weak contraction force may have been observed as a different property of the peak coherence.\",\"PeriodicalId\":232271,\"journal\":{\"name\":\"2018 11th Biomedical Engineering International Conference (BMEiCON)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 11th Biomedical Engineering International Conference (BMEiCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEICON.2018.8609919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEICON.2018.8609919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在β波段(15 ~ 35 Hz)观察到胫骨前肌在等距收缩时的脑电图(EEG)和肌电图(EMG)之间的一致性。当收缩力变强时,峰值相干频率移至γ波段(35 ~ 60 Hz)。相反,在弱力作用下保持收缩的基础上,相干峰值增大。然而,连贯性如何随着强力收缩的维持而变化,仍然是未知的。在这项研究中,5名健康的男性大学生被指示通过右踝关节背屈进行等距收缩1分钟,力为最大自愿收缩的10%至60%。背屈时进行TA肌的脑电图和肌电图检查。然后观察脑电与肌电的相干性变化,对应于收缩力和时间进程的变化。在大多数受试者中,弱收缩力时的相干性峰值出现在β波段,持续时间为12 ~ 60秒。然而,在强收缩力作用下的相干峰仅在前12s出现。随后,没有观察到明显的一致性。因此,由于强收缩力和/或维持弱收缩力而引起的肌肉疲劳可能已被观察到为峰值相干性的不同性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Force-Temporal Characteristics of EEG-EMG Coherence During Isometric Contraction of the Tibialis Anterior Muscle
The coherence between electroencephalogram (EEG) and electromyogram (EMG) of the tibialis anterior (TA) muscle during isometric contraction is observed in the beta band (15 to 35 Hz). When the contraction force becomes stronger, the peak coherence frequency shifts to the gamma band (35 to 60 Hz). In contrast, based on the maintenance of contraction with the weak force, the peak coherence value increases. However, the manner in which coherence changes according to the maintenance of contraction with strong force remains unknown. In this study, five healthy male university students were directed to execute isometric contraction by dorsiflexion of their right ankle joint for 1 min with forces of 10 to 60% of the maximum voluntary contraction. During dorsiflexion, EEG and EMG of the TA muscle were performed. Then, the changes in coherence between EEG and EMG were examined, corresponding to the changes in contraction force and time course. In the majority of subjects, the peak coherence during the weak contraction force was observed in the beta band and lasted for 12 to 60 s. However, the peak coherence during the strong contraction force was observed in the gamma band only for the first 12 s. Subsequently, no significant coherence was observed. Therefore, muscle fatigue due to strong contraction forces and/or maintenance of the weak contraction force may have been observed as a different property of the peak coherence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信