{"title":"用对易子描述四元数","authors":"E. Kleinfeld, Yoav Segev","doi":"10.1353/mpr.2022.0000","DOIUrl":null,"url":null,"abstract":"<p>Abstract:</p><p>Let <i>R</i> be an associative ring with 1, which is not commutative. Assume that any non-zero commutator <i>v</i> ∈ <i>R</i> satisfies: <i>v</i>2 is in the centre of <i>R</i>, and <i>v</i> is not a zero divisor.</p><p>We prove that <i>R</i> has no zero divisors, and that if char(<i>R</i>) ≠ 2, then the localisation of <i>R</i> at its centre is a quaternion division algebra. Our proof is elementary and self contained.</p>","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Characterisation of the Quaternions Using Commutators\",\"authors\":\"E. Kleinfeld, Yoav Segev\",\"doi\":\"10.1353/mpr.2022.0000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Abstract:</p><p>Let <i>R</i> be an associative ring with 1, which is not commutative. Assume that any non-zero commutator <i>v</i> ∈ <i>R</i> satisfies: <i>v</i>2 is in the centre of <i>R</i>, and <i>v</i> is not a zero divisor.</p><p>We prove that <i>R</i> has no zero divisors, and that if char(<i>R</i>) ≠ 2, then the localisation of <i>R</i> at its centre is a quaternion division algebra. Our proof is elementary and self contained.</p>\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/mpr.2022.0000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/mpr.2022.0000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Characterisation of the Quaternions Using Commutators
Abstract:
Let R be an associative ring with 1, which is not commutative. Assume that any non-zero commutator v ∈ R satisfies: v2 is in the centre of R, and v is not a zero divisor.
We prove that R has no zero divisors, and that if char(R) ≠ 2, then the localisation of R at its centre is a quaternion division algebra. Our proof is elementary and self contained.