用对易子描述四元数

E. Kleinfeld, Yoav Segev
{"title":"用对易子描述四元数","authors":"E. Kleinfeld, Yoav Segev","doi":"10.1353/mpr.2022.0000","DOIUrl":null,"url":null,"abstract":"<p>Abstract:</p><p>Let <i>R</i> be an associative ring with 1, which is not commutative. Assume that any non-zero commutator <i>v</i> ∈ <i>R</i> satisfies: <i>v</i>2 is in the centre of <i>R</i>, and <i>v</i> is not a zero divisor.</p><p>We prove that <i>R</i> has no zero divisors, and that if char(<i>R</i>) ≠ 2, then the localisation of <i>R</i> at its centre is a quaternion division algebra. Our proof is elementary and self contained.</p>","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Characterisation of the Quaternions Using Commutators\",\"authors\":\"E. Kleinfeld, Yoav Segev\",\"doi\":\"10.1353/mpr.2022.0000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Abstract:</p><p>Let <i>R</i> be an associative ring with 1, which is not commutative. Assume that any non-zero commutator <i>v</i> ∈ <i>R</i> satisfies: <i>v</i>2 is in the centre of <i>R</i>, and <i>v</i> is not a zero divisor.</p><p>We prove that <i>R</i> has no zero divisors, and that if char(<i>R</i>) ≠ 2, then the localisation of <i>R</i> at its centre is a quaternion division algebra. Our proof is elementary and self contained.</p>\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/mpr.2022.0000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/mpr.2022.0000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:设R是一个不可交换的带1的结合环。设任意非零对易子v∈R满足:v2在R的中心,且v不是零因子。证明了R不存在零因子,且如果char(R)≠2,则R在其中心的定域是一个四元数除法代数。我们的证明是初等的和自成体系的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Characterisation of the Quaternions Using Commutators

Abstract:

Let R be an associative ring with 1, which is not commutative. Assume that any non-zero commutator vR satisfies: v2 is in the centre of R, and v is not a zero divisor.

We prove that R has no zero divisors, and that if char(R) ≠ 2, then the localisation of R at its centre is a quaternion division algebra. Our proof is elementary and self contained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信