基于语素序列和卷积神经网络的哈萨克语文本分类

Sardar Parhat, Gao Ting, Mijit Ablimit, A. Hamdulla
{"title":"基于语素序列和卷积神经网络的哈萨克语文本分类","authors":"Sardar Parhat, Gao Ting, Mijit Ablimit, A. Hamdulla","doi":"10.1109/APSIPAASC47483.2019.9023280","DOIUrl":null,"url":null,"abstract":"Word embedding techniques can map language units into a sequential vector space based on context. And it is a natural way to extract and predict out-of-vocabulary (OOV) from context information, word-vector based morphological analysis has provided a convenient way for low resource languages processing tasks. In this paper, we discuss Kazakh text classification experiment based on the m2asr morphological analyzer for small agglutinative languages. Morpheme segmentation and stem extraction from noisy data based on stem-vector similarity representation are experimented on Kazakh language. After preparing both word and morpheme-based training text corpora, we apply convolutional neural networks (CNN) as a feature selection and text classification algorithm to perform text classification tasks. Experimental results show that morpheme-based approach outperforms word-based approach.","PeriodicalId":145222,"journal":{"name":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A morpheme sequence and convolutional neural network based Kazakh text classification\",\"authors\":\"Sardar Parhat, Gao Ting, Mijit Ablimit, A. Hamdulla\",\"doi\":\"10.1109/APSIPAASC47483.2019.9023280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Word embedding techniques can map language units into a sequential vector space based on context. And it is a natural way to extract and predict out-of-vocabulary (OOV) from context information, word-vector based morphological analysis has provided a convenient way for low resource languages processing tasks. In this paper, we discuss Kazakh text classification experiment based on the m2asr morphological analyzer for small agglutinative languages. Morpheme segmentation and stem extraction from noisy data based on stem-vector similarity representation are experimented on Kazakh language. After preparing both word and morpheme-based training text corpora, we apply convolutional neural networks (CNN) as a feature selection and text classification algorithm to perform text classification tasks. Experimental results show that morpheme-based approach outperforms word-based approach.\",\"PeriodicalId\":145222,\"journal\":{\"name\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPAASC47483.2019.9023280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPAASC47483.2019.9023280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

词嵌入技术可以将语言单元映射到基于上下文的顺序向量空间中。基于词向量的形态分析是一种从上下文信息中提取和预测词汇外(OOV)的自然方法,为低资源语言处理任务提供了一种方便的方法。本文讨论了基于m2asr形态分析仪的哈萨克语小黏着语文本分类实验。以哈萨克语为研究对象,研究了基于干向量相似表示的语素分割和词干提取方法。在准备了基于词和语素的训练文本语料库之后,我们将卷积神经网络(CNN)作为特征选择和文本分类算法来执行文本分类任务。实验结果表明,基于语素的方法优于基于词的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A morpheme sequence and convolutional neural network based Kazakh text classification
Word embedding techniques can map language units into a sequential vector space based on context. And it is a natural way to extract and predict out-of-vocabulary (OOV) from context information, word-vector based morphological analysis has provided a convenient way for low resource languages processing tasks. In this paper, we discuss Kazakh text classification experiment based on the m2asr morphological analyzer for small agglutinative languages. Morpheme segmentation and stem extraction from noisy data based on stem-vector similarity representation are experimented on Kazakh language. After preparing both word and morpheme-based training text corpora, we apply convolutional neural networks (CNN) as a feature selection and text classification algorithm to perform text classification tasks. Experimental results show that morpheme-based approach outperforms word-based approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信