网络上梯度算法的二阶保证

Amir Daneshmand, G. Scutari, V. Kungurtsev
{"title":"网络上梯度算法的二阶保证","authors":"Amir Daneshmand, G. Scutari, V. Kungurtsev","doi":"10.1109/ALLERTON.2018.8636044","DOIUrl":null,"url":null,"abstract":"We consider distributed smooth nonconvex unconstrained optimization over networks, modeled as a connected graph. We examine the behavior of distributed gradient-based algorithms near strict saddle points. Specifically, we establish that (i) the renowned Distributed Gradient Descent (DGD) algorithm likely converges to a neighborhood of a Second-order Stationary (SoS) solution; and (ii) the more recent class of distributed algorithms, based on gradient tracking (termed SONATA), likely converges to exact SoS solutions, thus avoiding (strict) saddle points.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Second-order Guarantees of Gradient Algorithms over Networks\",\"authors\":\"Amir Daneshmand, G. Scutari, V. Kungurtsev\",\"doi\":\"10.1109/ALLERTON.2018.8636044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider distributed smooth nonconvex unconstrained optimization over networks, modeled as a connected graph. We examine the behavior of distributed gradient-based algorithms near strict saddle points. Specifically, we establish that (i) the renowned Distributed Gradient Descent (DGD) algorithm likely converges to a neighborhood of a Second-order Stationary (SoS) solution; and (ii) the more recent class of distributed algorithms, based on gradient tracking (termed SONATA), likely converges to exact SoS solutions, thus avoiding (strict) saddle points.\",\"PeriodicalId\":299280,\"journal\":{\"name\":\"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2018.8636044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8636044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们考虑网络上的分布式光滑非凸无约束优化,建模为连通图。我们研究了分布式梯度算法在严格鞍点附近的行为。具体来说,我们确定(i)著名的分布式梯度下降(DGD)算法可能收敛到二阶平稳(SoS)解的邻域;(ii)最近一类基于梯度跟踪(称为SONATA)的分布式算法可能收敛到精确的SoS解,从而避免了(严格的)鞍点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second-order Guarantees of Gradient Algorithms over Networks
We consider distributed smooth nonconvex unconstrained optimization over networks, modeled as a connected graph. We examine the behavior of distributed gradient-based algorithms near strict saddle points. Specifically, we establish that (i) the renowned Distributed Gradient Descent (DGD) algorithm likely converges to a neighborhood of a Second-order Stationary (SoS) solution; and (ii) the more recent class of distributed algorithms, based on gradient tracking (termed SONATA), likely converges to exact SoS solutions, thus avoiding (strict) saddle points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信