基于自组织映射的移动无线接入网分析

K. Raivio, O. Simula, J. Laiho, P. Lehtimaki
{"title":"基于自组织映射的移动无线接入网分析","authors":"K. Raivio, O. Simula, J. Laiho, P. Lehtimaki","doi":"10.1109/INM.2003.1194197","DOIUrl":null,"url":null,"abstract":"Mobile networks produce a huge amount of spatio-temporal data. The data consists of parameters of base stations and quality information of calls. The self-organizing map (SOM) is an efficient tool for visualization and clustering of multidimensional data. It transforms the input vectors on a two-dimensional grid of prototype vectors and orders them. The ordered prototype vectors are easier to visualize and explore than the original data. There are two possible ways to start the analysis. We can build either a model of the network using state vectors with parameters from all mobile cells or a general one cell model trained using one cell state vector from all cells. In both methods, further analysis is needed. In the first method the distributions of parameters of one cell can be compared with the others and in the second it can be compared how well the general model represents each cell.","PeriodicalId":273743,"journal":{"name":"IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Analysis of mobile radio access network using the self-organizing map\",\"authors\":\"K. Raivio, O. Simula, J. Laiho, P. Lehtimaki\",\"doi\":\"10.1109/INM.2003.1194197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile networks produce a huge amount of spatio-temporal data. The data consists of parameters of base stations and quality information of calls. The self-organizing map (SOM) is an efficient tool for visualization and clustering of multidimensional data. It transforms the input vectors on a two-dimensional grid of prototype vectors and orders them. The ordered prototype vectors are easier to visualize and explore than the original data. There are two possible ways to start the analysis. We can build either a model of the network using state vectors with parameters from all mobile cells or a general one cell model trained using one cell state vector from all cells. In both methods, further analysis is needed. In the first method the distributions of parameters of one cell can be compared with the others and in the second it can be compared how well the general model represents each cell.\",\"PeriodicalId\":273743,\"journal\":{\"name\":\"IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INM.2003.1194197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INM.2003.1194197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

移动网络产生了大量的时空数据。数据由基站参数和通话质量信息组成。自组织映射(SOM)是实现多维数据可视化和聚类的有效工具。它将输入向量在二维原型向量网格上进行变换并排序。有序的原型向量比原始数据更容易可视化和探索。有两种可能的方法来开始分析。我们可以使用带有所有移动单元参数的状态向量来构建网络模型,或者使用来自所有单元的一个单元状态向量来训练一般的单单元模型。这两种方法都需要进一步的分析。在第一种方法中,可以比较一个细胞的参数分布与其他细胞的分布,在第二种方法中,可以比较一般模型如何很好地代表每个细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of mobile radio access network using the self-organizing map
Mobile networks produce a huge amount of spatio-temporal data. The data consists of parameters of base stations and quality information of calls. The self-organizing map (SOM) is an efficient tool for visualization and clustering of multidimensional data. It transforms the input vectors on a two-dimensional grid of prototype vectors and orders them. The ordered prototype vectors are easier to visualize and explore than the original data. There are two possible ways to start the analysis. We can build either a model of the network using state vectors with parameters from all mobile cells or a general one cell model trained using one cell state vector from all cells. In both methods, further analysis is needed. In the first method the distributions of parameters of one cell can be compared with the others and in the second it can be compared how well the general model represents each cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信