{"title":"光伏并网七电平逆变器的设计与控制","authors":"F. Mulolani, Francis Kafata, Esau Zulu","doi":"10.33260/ZICTJOURNAL.V3I1.72","DOIUrl":null,"url":null,"abstract":"This paper presents the design and closed-loop current control of a grid connected seven-level, 3-phase diode-clamped multilevel inverter for Photovoltaic (PV) applications. The proposed closed loop current control technique is based on the voltage-oriented proportional integral (PI) controller theory. The modulation technique used is level-shifted-carrier sinusoidal pulse width modulation (SPWM). The gain values of PI controller were selected to achieve good current quality and dynamic response. Grid synchronization was achieved by using a synchronous-reference frame phase-locked loop (SRF-PLL). Matlab/Simulink was used for the control system design and simulation. The simulation results show that a 1.34% total harmonic distortion (THD) of the output current was achieved which is within the allowable current distortion limits by international standards. The stability of the system was analyzed using pole-zero mapping and root locus.","PeriodicalId":206279,"journal":{"name":"Zambia ICT Journal","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Control of a Grid-connected Seven Level Inverter for Photovoltaic Applications\",\"authors\":\"F. Mulolani, Francis Kafata, Esau Zulu\",\"doi\":\"10.33260/ZICTJOURNAL.V3I1.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and closed-loop current control of a grid connected seven-level, 3-phase diode-clamped multilevel inverter for Photovoltaic (PV) applications. The proposed closed loop current control technique is based on the voltage-oriented proportional integral (PI) controller theory. The modulation technique used is level-shifted-carrier sinusoidal pulse width modulation (SPWM). The gain values of PI controller were selected to achieve good current quality and dynamic response. Grid synchronization was achieved by using a synchronous-reference frame phase-locked loop (SRF-PLL). Matlab/Simulink was used for the control system design and simulation. The simulation results show that a 1.34% total harmonic distortion (THD) of the output current was achieved which is within the allowable current distortion limits by international standards. The stability of the system was analyzed using pole-zero mapping and root locus.\",\"PeriodicalId\":206279,\"journal\":{\"name\":\"Zambia ICT Journal\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zambia ICT Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33260/ZICTJOURNAL.V3I1.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zambia ICT Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33260/ZICTJOURNAL.V3I1.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Control of a Grid-connected Seven Level Inverter for Photovoltaic Applications
This paper presents the design and closed-loop current control of a grid connected seven-level, 3-phase diode-clamped multilevel inverter for Photovoltaic (PV) applications. The proposed closed loop current control technique is based on the voltage-oriented proportional integral (PI) controller theory. The modulation technique used is level-shifted-carrier sinusoidal pulse width modulation (SPWM). The gain values of PI controller were selected to achieve good current quality and dynamic response. Grid synchronization was achieved by using a synchronous-reference frame phase-locked loop (SRF-PLL). Matlab/Simulink was used for the control system design and simulation. The simulation results show that a 1.34% total harmonic distortion (THD) of the output current was achieved which is within the allowable current distortion limits by international standards. The stability of the system was analyzed using pole-zero mapping and root locus.