基于gmm的说话人识别中的通道空间几何

P. Kenny, Gilles Boulianne, P. Ouellet, P. Dumouchel
{"title":"基于gmm的说话人识别中的通道空间几何","authors":"P. Kenny, Gilles Boulianne, P. Ouellet, P. Dumouchel","doi":"10.1109/ODYSSEY.2006.248137","DOIUrl":null,"url":null,"abstract":"We describe an extension of the joint factor analysis model of speaker and channel variability in which channel supervectors are modeled by mixtures of low-rank Gaussians rather than by a unimodal Gaussian. This version of the joint factor analysis model includes data-driven feature mapping and the standard joint factor analysis models as limiting cases and it enables us to explore a range of possibilities between these two extremes. Our experimental results indicate that unimodal models of relatively high rank perform better than mixture models of lower rank and they confirm the appropriateness of the unimodal assumption in the standard joint factor analysis model","PeriodicalId":215883,"journal":{"name":"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop","volume":"320 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Geometry of the Channel Space in GMM-Based Speaker Recognition\",\"authors\":\"P. Kenny, Gilles Boulianne, P. Ouellet, P. Dumouchel\",\"doi\":\"10.1109/ODYSSEY.2006.248137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an extension of the joint factor analysis model of speaker and channel variability in which channel supervectors are modeled by mixtures of low-rank Gaussians rather than by a unimodal Gaussian. This version of the joint factor analysis model includes data-driven feature mapping and the standard joint factor analysis models as limiting cases and it enables us to explore a range of possibilities between these two extremes. Our experimental results indicate that unimodal models of relatively high rank perform better than mixture models of lower rank and they confirm the appropriateness of the unimodal assumption in the standard joint factor analysis model\",\"PeriodicalId\":215883,\"journal\":{\"name\":\"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop\",\"volume\":\"320 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ODYSSEY.2006.248137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ODYSSEY.2006.248137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们描述了扬声器和信道变异性的联合因子分析模型的扩展,其中信道超向量由低秩高斯的混合而不是单峰高斯建模。这个版本的联合因子分析模型包括数据驱动的特征映射和标准的联合因子分析模型作为限制案例,它使我们能够探索这两个极端之间的一系列可能性。我们的实验结果表明,相对高秩的单峰模型比低秩的混合模型表现得更好,这证实了标准联合因子分析模型中单峰假设的适用性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Geometry of the Channel Space in GMM-Based Speaker Recognition
We describe an extension of the joint factor analysis model of speaker and channel variability in which channel supervectors are modeled by mixtures of low-rank Gaussians rather than by a unimodal Gaussian. This version of the joint factor analysis model includes data-driven feature mapping and the standard joint factor analysis models as limiting cases and it enables us to explore a range of possibilities between these two extremes. Our experimental results indicate that unimodal models of relatively high rank perform better than mixture models of lower rank and they confirm the appropriateness of the unimodal assumption in the standard joint factor analysis model
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信