用方差分析分析PCG信号在心音检测中的相关性和冗余性

L. Velásquez-Martínez, S. Murillo-Rendón, G. Castellanos-Domínguez
{"title":"用方差分析分析PCG信号在心音检测中的相关性和冗余性","authors":"L. Velásquez-Martínez, S. Murillo-Rendón, G. Castellanos-Domínguez","doi":"10.1109/STSIVA.2012.6340580","DOIUrl":null,"url":null,"abstract":"One of the most important operating problems of the human heart valves is the murmur, which can be detected by auscultation employing an stethoscope. In order to design an aided diagnosis system for detecting the mentioned pathology, it is required to establish the discriminat capacity of the calculated features, which are used during the decision making stage. In this work, the analysis of variance (ANOVA) is employed to select the relevant features from an original feature set. The analysis allows to reduce the feature space dimension without decrementing the classification performance of the automatic system, compared to the classification performance obtained when the full feature set is employed.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relevance and redundancy analysis of PCG signals in the detection of heart murmurs by ANOVA\",\"authors\":\"L. Velásquez-Martínez, S. Murillo-Rendón, G. Castellanos-Domínguez\",\"doi\":\"10.1109/STSIVA.2012.6340580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important operating problems of the human heart valves is the murmur, which can be detected by auscultation employing an stethoscope. In order to design an aided diagnosis system for detecting the mentioned pathology, it is required to establish the discriminat capacity of the calculated features, which are used during the decision making stage. In this work, the analysis of variance (ANOVA) is employed to select the relevant features from an original feature set. The analysis allows to reduce the feature space dimension without decrementing the classification performance of the automatic system, compared to the classification performance obtained when the full feature set is employed.\",\"PeriodicalId\":383297,\"journal\":{\"name\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2012.6340580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人类心脏瓣膜最重要的操作问题之一是杂音,它可以通过听诊器的听诊来检测。为了设计一个检测上述病理的辅助诊断系统,需要建立计算特征的判别能力,并将其用于决策阶段。在这项工作中,采用方差分析(ANOVA)从原始特征集中选择相关特征。与使用完整特征集时获得的分类性能相比,该分析允许在不降低自动系统分类性能的情况下降低特征空间维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relevance and redundancy analysis of PCG signals in the detection of heart murmurs by ANOVA
One of the most important operating problems of the human heart valves is the murmur, which can be detected by auscultation employing an stethoscope. In order to design an aided diagnosis system for detecting the mentioned pathology, it is required to establish the discriminat capacity of the calculated features, which are used during the decision making stage. In this work, the analysis of variance (ANOVA) is employed to select the relevant features from an original feature set. The analysis allows to reduce the feature space dimension without decrementing the classification performance of the automatic system, compared to the classification performance obtained when the full feature set is employed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信