利用mlp改进基于dtw的在线手写体字符识别引擎

María José Castro Bleda, Salvador España Boquera, J. Gorbe-Moya, Francisco Zamora-Martínez, D. Llorens, A. Marzal, F. Prat, J. M. Vilar
{"title":"利用mlp改进基于dtw的在线手写体字符识别引擎","authors":"María José Castro Bleda, Salvador España Boquera, J. Gorbe-Moya, Francisco Zamora-Martínez, D. Llorens, A. Marzal, F. Prat, J. M. Vilar","doi":"10.1109/ICDAR.2009.209","DOIUrl":null,"url":null,"abstract":"Our open source real-time recognition engine for on-line isolated handwritten characters is a 3-Nearest Neighbor classifier that uses approximate dynamic time warping comparisons with a set of prototypes filtered by two fast distance-based methods. This engine achieved excellent classification rates on two writer-independent tasks:UJIpenchars and Pendigits. We present the integration of multilayer perceptrons into our engine, an improvement that speeds up the recognition process by taking advantage of the independence of these networks’ classification times from training set sizes. We also present experimental results on our new publicly available UJIpenchars2 database and on Pendigits.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Improving a DTW-Based Recognition Engine for On-line Handwritten Characters by Using MLPs\",\"authors\":\"María José Castro Bleda, Salvador España Boquera, J. Gorbe-Moya, Francisco Zamora-Martínez, D. Llorens, A. Marzal, F. Prat, J. M. Vilar\",\"doi\":\"10.1109/ICDAR.2009.209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our open source real-time recognition engine for on-line isolated handwritten characters is a 3-Nearest Neighbor classifier that uses approximate dynamic time warping comparisons with a set of prototypes filtered by two fast distance-based methods. This engine achieved excellent classification rates on two writer-independent tasks:UJIpenchars and Pendigits. We present the integration of multilayer perceptrons into our engine, an improvement that speeds up the recognition process by taking advantage of the independence of these networks’ classification times from training set sizes. We also present experimental results on our new publicly available UJIpenchars2 database and on Pendigits.\",\"PeriodicalId\":433762,\"journal\":{\"name\":\"2009 10th International Conference on Document Analysis and Recognition\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2009.209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们的在线孤立手写字符的开源实时识别引擎是一个3-最近邻分类器,它使用近似动态时间扭曲比较与一组原型,由两种快速的基于距离的方法过滤。该引擎在两个与编写器无关的任务(UJIpenchars和Pendigits)上实现了出色的分类率。我们将多层感知器集成到我们的引擎中,通过利用这些网络的分类时间与训练集大小的独立性来加快识别过程。我们还介绍了我们新的公开可用的UJIpenchars2数据库和Pendigits的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving a DTW-Based Recognition Engine for On-line Handwritten Characters by Using MLPs
Our open source real-time recognition engine for on-line isolated handwritten characters is a 3-Nearest Neighbor classifier that uses approximate dynamic time warping comparisons with a set of prototypes filtered by two fast distance-based methods. This engine achieved excellent classification rates on two writer-independent tasks:UJIpenchars and Pendigits. We present the integration of multilayer perceptrons into our engine, an improvement that speeds up the recognition process by taking advantage of the independence of these networks’ classification times from training set sizes. We also present experimental results on our new publicly available UJIpenchars2 database and on Pendigits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信