拜占庭攻击下的人机层次网络决策

Chen Quan, Baocheng Geng, Y. Han, P. Varshney
{"title":"拜占庭攻击下的人机层次网络决策","authors":"Chen Quan, Baocheng Geng, Y. Han, P. Varshney","doi":"10.1109/CISS56502.2023.10089766","DOIUrl":null,"url":null,"abstract":"This paper proposes a belief-updating scheme in a human-machine collaborative decision-making network to com-bat Byzantine attacks. A hierarchical framework is used to realize the network where local decisions from physical sensors act as reference decisions to improve the quality of human sensor decisions. During the decision-making process, the belief that each physical sensor is malicious is updated. The case when humans have side information available is investigated, and its impact is analyzed. Simulation results substantiate that the proposed scheme can significantly improve the quality of human sensor decisions, even when most physical sensors are malicious. Moreover, the performance of the proposed method does not necessarily depend on the knowledge of the actual fraction of malicious physical sensors. Consequently, the proposed scheme can effectively defend against Byzantine attacks and improve the quality of human sensors' decisions so that the performance of the human-machine collaborative system is enhanced.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-machine Hierarchical Networks for Decision Making under Byzantine Attacks\",\"authors\":\"Chen Quan, Baocheng Geng, Y. Han, P. Varshney\",\"doi\":\"10.1109/CISS56502.2023.10089766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a belief-updating scheme in a human-machine collaborative decision-making network to com-bat Byzantine attacks. A hierarchical framework is used to realize the network where local decisions from physical sensors act as reference decisions to improve the quality of human sensor decisions. During the decision-making process, the belief that each physical sensor is malicious is updated. The case when humans have side information available is investigated, and its impact is analyzed. Simulation results substantiate that the proposed scheme can significantly improve the quality of human sensor decisions, even when most physical sensors are malicious. Moreover, the performance of the proposed method does not necessarily depend on the knowledge of the actual fraction of malicious physical sensors. Consequently, the proposed scheme can effectively defend against Byzantine attacks and improve the quality of human sensors' decisions so that the performance of the human-machine collaborative system is enhanced.\",\"PeriodicalId\":243775,\"journal\":{\"name\":\"2023 57th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 57th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS56502.2023.10089766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于人机协同决策网络对抗拜占庭攻击的信念更新方案。采用层次结构框架实现了以物理传感器的局部决策作为参考决策的网络,提高了人工传感器决策的质量。在决策过程中,每个物理传感器是恶意的信念被更新。当人类有可利用的间接信息的情况下进行调查,并分析其影响。仿真结果表明,即使在大多数物理传感器是恶意的情况下,所提出的方案也能显著提高人类传感器决策的质量。此外,所提出的方法的性能并不一定依赖于恶意物理传感器的实际比例的知识。因此,该方案能够有效防御拜占庭式攻击,提高人体传感器的决策质量,从而提高人机协作系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human-machine Hierarchical Networks for Decision Making under Byzantine Attacks
This paper proposes a belief-updating scheme in a human-machine collaborative decision-making network to com-bat Byzantine attacks. A hierarchical framework is used to realize the network where local decisions from physical sensors act as reference decisions to improve the quality of human sensor decisions. During the decision-making process, the belief that each physical sensor is malicious is updated. The case when humans have side information available is investigated, and its impact is analyzed. Simulation results substantiate that the proposed scheme can significantly improve the quality of human sensor decisions, even when most physical sensors are malicious. Moreover, the performance of the proposed method does not necessarily depend on the knowledge of the actual fraction of malicious physical sensors. Consequently, the proposed scheme can effectively defend against Byzantine attacks and improve the quality of human sensors' decisions so that the performance of the human-machine collaborative system is enhanced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信