基于神经逼近器和贝叶斯推理的欠驱动系统鲁棒无源控制

Wankun Sirichotiyakul, N. Ashenafi, A. Satici
{"title":"基于神经逼近器和贝叶斯推理的欠驱动系统鲁棒无源控制","authors":"Wankun Sirichotiyakul, N. Ashenafi, A. Satici","doi":"10.23919/ACC53348.2022.9867143","DOIUrl":null,"url":null,"abstract":"We synthesize controllers for underactuated robotic systems using data-driven approaches. Inspired by techniques from classical passivity theory, the control law is parametrized by the gradient of an energy-like (Lyapunov) function, which is represented by a neural network. With the control task encoded as the objective of the optimization, we systematically identify the optimal neural net parameters using gradient-based techniques. The proposed method is validated on the cart-pole swing-up task, both in simulation and on a real system. Additionally, we address questions about controller’s robustness against model uncertainties and measurement noise, using a Bayesian approach to infer a probability distribution over the parameters of the controller. The proposed robustness improvement technique is demonstrated on the simple pendulum system.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Data-Driven Passivity-Based Control of Underactuated Systems via Neural Approximators and Bayesian Inference\",\"authors\":\"Wankun Sirichotiyakul, N. Ashenafi, A. Satici\",\"doi\":\"10.23919/ACC53348.2022.9867143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We synthesize controllers for underactuated robotic systems using data-driven approaches. Inspired by techniques from classical passivity theory, the control law is parametrized by the gradient of an energy-like (Lyapunov) function, which is represented by a neural network. With the control task encoded as the objective of the optimization, we systematically identify the optimal neural net parameters using gradient-based techniques. The proposed method is validated on the cart-pole swing-up task, both in simulation and on a real system. Additionally, we address questions about controller’s robustness against model uncertainties and measurement noise, using a Bayesian approach to infer a probability distribution over the parameters of the controller. The proposed robustness improvement technique is demonstrated on the simple pendulum system.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们使用数据驱动的方法合成欠驱动机器人系统的控制器。受经典无源理论技术的启发,控制律由类能量(Lyapunov)函数的梯度参数化,该函数由神经网络表示。以编码的控制任务为优化目标,采用基于梯度的方法系统地识别出最优神经网络参数。通过仿真和实际系统验证了该方法的有效性。此外,我们解决了关于控制器对模型不确定性和测量噪声的鲁棒性问题,使用贝叶斯方法来推断控制器参数的概率分布。在单摆系统上进行了鲁棒性改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Data-Driven Passivity-Based Control of Underactuated Systems via Neural Approximators and Bayesian Inference
We synthesize controllers for underactuated robotic systems using data-driven approaches. Inspired by techniques from classical passivity theory, the control law is parametrized by the gradient of an energy-like (Lyapunov) function, which is represented by a neural network. With the control task encoded as the objective of the optimization, we systematically identify the optimal neural net parameters using gradient-based techniques. The proposed method is validated on the cart-pole swing-up task, both in simulation and on a real system. Additionally, we address questions about controller’s robustness against model uncertainties and measurement noise, using a Bayesian approach to infer a probability distribution over the parameters of the controller. The proposed robustness improvement technique is demonstrated on the simple pendulum system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信