{"title":"基于神经逼近器和贝叶斯推理的欠驱动系统鲁棒无源控制","authors":"Wankun Sirichotiyakul, N. Ashenafi, A. Satici","doi":"10.23919/ACC53348.2022.9867143","DOIUrl":null,"url":null,"abstract":"We synthesize controllers for underactuated robotic systems using data-driven approaches. Inspired by techniques from classical passivity theory, the control law is parametrized by the gradient of an energy-like (Lyapunov) function, which is represented by a neural network. With the control task encoded as the objective of the optimization, we systematically identify the optimal neural net parameters using gradient-based techniques. The proposed method is validated on the cart-pole swing-up task, both in simulation and on a real system. Additionally, we address questions about controller’s robustness against model uncertainties and measurement noise, using a Bayesian approach to infer a probability distribution over the parameters of the controller. The proposed robustness improvement technique is demonstrated on the simple pendulum system.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Data-Driven Passivity-Based Control of Underactuated Systems via Neural Approximators and Bayesian Inference\",\"authors\":\"Wankun Sirichotiyakul, N. Ashenafi, A. Satici\",\"doi\":\"10.23919/ACC53348.2022.9867143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We synthesize controllers for underactuated robotic systems using data-driven approaches. Inspired by techniques from classical passivity theory, the control law is parametrized by the gradient of an energy-like (Lyapunov) function, which is represented by a neural network. With the control task encoded as the objective of the optimization, we systematically identify the optimal neural net parameters using gradient-based techniques. The proposed method is validated on the cart-pole swing-up task, both in simulation and on a real system. Additionally, we address questions about controller’s robustness against model uncertainties and measurement noise, using a Bayesian approach to infer a probability distribution over the parameters of the controller. The proposed robustness improvement technique is demonstrated on the simple pendulum system.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Data-Driven Passivity-Based Control of Underactuated Systems via Neural Approximators and Bayesian Inference
We synthesize controllers for underactuated robotic systems using data-driven approaches. Inspired by techniques from classical passivity theory, the control law is parametrized by the gradient of an energy-like (Lyapunov) function, which is represented by a neural network. With the control task encoded as the objective of the optimization, we systematically identify the optimal neural net parameters using gradient-based techniques. The proposed method is validated on the cart-pole swing-up task, both in simulation and on a real system. Additionally, we address questions about controller’s robustness against model uncertainties and measurement noise, using a Bayesian approach to infer a probability distribution over the parameters of the controller. The proposed robustness improvement technique is demonstrated on the simple pendulum system.