支持向量机参数选择的优化方法

Yulin Dong, Manghui Tu, Zhonghang Xia, Guangming Xing
{"title":"支持向量机参数选择的优化方法","authors":"Yulin Dong, Manghui Tu, Zhonghang Xia, Guangming Xing","doi":"10.1109/ICMLA.2007.38","DOIUrl":null,"url":null,"abstract":"It has been shown that the cost parameters and kernel parameters are critical in the performance of support vector machines (SVMs). A standard parameter selection method compares parameters among a discrete set of values, called the candidate set, and picks the one which has the best classification accuracy. As a result, the choice of parameters strongly depends on the pre-defined candidate set. In this paper, we formulate the selection of the cost parameter and kernel parameter as a two-level optimization problem, in which the values of parameters vary continuously and thus optimization techniques can be applied to select ideal parameters. Due to the non-smoothness of the objective function in our model, a genetic algorithm has been presented. Numerical results show that the two-level approach can significantly improve the performance of SVM classifier in terms of classification accuracy.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An optimization method for selecting parameters in support vector machines\",\"authors\":\"Yulin Dong, Manghui Tu, Zhonghang Xia, Guangming Xing\",\"doi\":\"10.1109/ICMLA.2007.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been shown that the cost parameters and kernel parameters are critical in the performance of support vector machines (SVMs). A standard parameter selection method compares parameters among a discrete set of values, called the candidate set, and picks the one which has the best classification accuracy. As a result, the choice of parameters strongly depends on the pre-defined candidate set. In this paper, we formulate the selection of the cost parameter and kernel parameter as a two-level optimization problem, in which the values of parameters vary continuously and thus optimization techniques can be applied to select ideal parameters. Due to the non-smoothness of the objective function in our model, a genetic algorithm has been presented. Numerical results show that the two-level approach can significantly improve the performance of SVM classifier in terms of classification accuracy.\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

研究表明,代价参数和核参数是影响支持向量机性能的关键因素。标准的参数选择方法是在一个离散的值集(称为候选集)中比较参数,并选择具有最佳分类精度的参数。因此,参数的选择很大程度上取决于预定义的候选集。本文将代价参数和核参数的选择表述为一个参数值连续变化的两级优化问题,因此可以利用优化技术来选择理想参数。针对模型中目标函数的非光滑性,提出了一种遗传算法。数值结果表明,两级方法能显著提高SVM分类器的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimization method for selecting parameters in support vector machines
It has been shown that the cost parameters and kernel parameters are critical in the performance of support vector machines (SVMs). A standard parameter selection method compares parameters among a discrete set of values, called the candidate set, and picks the one which has the best classification accuracy. As a result, the choice of parameters strongly depends on the pre-defined candidate set. In this paper, we formulate the selection of the cost parameter and kernel parameter as a two-level optimization problem, in which the values of parameters vary continuously and thus optimization techniques can be applied to select ideal parameters. Due to the non-smoothness of the objective function in our model, a genetic algorithm has been presented. Numerical results show that the two-level approach can significantly improve the performance of SVM classifier in terms of classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信