如何使CFD对气动弹性学家有用的降阶气动建模

E. Dowell, K. Hall, Michael C. Romanowski
{"title":"如何使CFD对气动弹性学家有用的降阶气动建模","authors":"E. Dowell, K. Hall, Michael C. Romanowski","doi":"10.1115/imece1997-0166","DOIUrl":null,"url":null,"abstract":"\n In this article, we review the status of reduced order modeling of unsteady aerodynamic systems. Reduced order modeling is a conceptually novel and computationally efficient technique for computing unsteady flow about isolated airfoils, wings, and turbomachinery cascades. Starting with either a time domain or frequency domain computational fluid dynamics (CFD) analysis of unsteady aerodynamic or aeroacoustic flows, a large, sparse eigenvalue problem is solved using the Lanczos algorithm. Then, using just a few of the resulting eigenmodes, a Reduced Order Model of the unsteady flow is constructed. With this model, one can rapidly and accurately predict the unsteady aerodynamic response of the system over a wide range of reduced frequencies. Moreover, the eigenmode information provides important insights into the physics of unsteady flows. Finally, the method is particularly well suited for use in the active control of aeroelastic and aeroacoustic phenomena as well as in standard aeroelastic analysis for flutter or gust response. Numerical results presented include: 1) comparison of the reduced order model to classical unsteady incompressible aerodynamic theory, 2) reduced order calculations of compressible unsteady aerodynamics based on the full potential equation, 3) reduced order calculations of unsteady flow about an isolated airfoil based on the Euler equations, and 4) reduced order calculations of unsteady viscous flows associated with cascade stall flutter, 5) flutter analysis using the Reduced Order Model. The presentation will include our most recent results including the use of A-one Orthogonal Decomposition as an alternative or complement to eigenmodes.","PeriodicalId":166345,"journal":{"name":"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reduced Order Aerodynamic Modeling of How to Make CFD Useful to an Aeroelastician\",\"authors\":\"E. Dowell, K. Hall, Michael C. Romanowski\",\"doi\":\"10.1115/imece1997-0166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this article, we review the status of reduced order modeling of unsteady aerodynamic systems. Reduced order modeling is a conceptually novel and computationally efficient technique for computing unsteady flow about isolated airfoils, wings, and turbomachinery cascades. Starting with either a time domain or frequency domain computational fluid dynamics (CFD) analysis of unsteady aerodynamic or aeroacoustic flows, a large, sparse eigenvalue problem is solved using the Lanczos algorithm. Then, using just a few of the resulting eigenmodes, a Reduced Order Model of the unsteady flow is constructed. With this model, one can rapidly and accurately predict the unsteady aerodynamic response of the system over a wide range of reduced frequencies. Moreover, the eigenmode information provides important insights into the physics of unsteady flows. Finally, the method is particularly well suited for use in the active control of aeroelastic and aeroacoustic phenomena as well as in standard aeroelastic analysis for flutter or gust response. Numerical results presented include: 1) comparison of the reduced order model to classical unsteady incompressible aerodynamic theory, 2) reduced order calculations of compressible unsteady aerodynamics based on the full potential equation, 3) reduced order calculations of unsteady flow about an isolated airfoil based on the Euler equations, and 4) reduced order calculations of unsteady viscous flows associated with cascade stall flutter, 5) flutter analysis using the Reduced Order Model. The presentation will include our most recent results including the use of A-one Orthogonal Decomposition as an alternative or complement to eigenmodes.\",\"PeriodicalId\":166345,\"journal\":{\"name\":\"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1997-0166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1997-0166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文综述了非定常气动系统降阶建模的研究现状。降阶建模是一种概念新颖且计算效率高的技术,可用于计算孤立翼型、机翼和涡轮机械叶栅的非定常流场。从非定常气动或气动声学流动的时域或频域计算流体动力学(CFD)分析出发,利用Lanczos算法求解了一个大的稀疏特征值问题。然后,利用得到的几个特征模态,建立了非定常流场的降阶模型。利用该模型,可以快速准确地预测系统在大范围的降频范围内的非定常气动响应。此外,特征模态信息为非定常流的物理特性提供了重要的见解。最后,该方法特别适合用于气动弹性和气动声学现象的主动控制,以及用于颤振或阵风响应的标准气动弹性分析。数值结果包括:1)降阶模型与经典非定常不可压缩气动理论的比较;2)基于全势方程的可压缩非定常空气动力学降阶计算;3)基于欧拉方程的非定常翼型非定常流动降阶计算;4)与叶栅失速颤振相关的非定常粘性流动降阶计算;5)基于降阶模型的颤振分析。本报告将包括我们最近的结果,包括使用a - 1正交分解作为特征模态的替代或补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced Order Aerodynamic Modeling of How to Make CFD Useful to an Aeroelastician
In this article, we review the status of reduced order modeling of unsteady aerodynamic systems. Reduced order modeling is a conceptually novel and computationally efficient technique for computing unsteady flow about isolated airfoils, wings, and turbomachinery cascades. Starting with either a time domain or frequency domain computational fluid dynamics (CFD) analysis of unsteady aerodynamic or aeroacoustic flows, a large, sparse eigenvalue problem is solved using the Lanczos algorithm. Then, using just a few of the resulting eigenmodes, a Reduced Order Model of the unsteady flow is constructed. With this model, one can rapidly and accurately predict the unsteady aerodynamic response of the system over a wide range of reduced frequencies. Moreover, the eigenmode information provides important insights into the physics of unsteady flows. Finally, the method is particularly well suited for use in the active control of aeroelastic and aeroacoustic phenomena as well as in standard aeroelastic analysis for flutter or gust response. Numerical results presented include: 1) comparison of the reduced order model to classical unsteady incompressible aerodynamic theory, 2) reduced order calculations of compressible unsteady aerodynamics based on the full potential equation, 3) reduced order calculations of unsteady flow about an isolated airfoil based on the Euler equations, and 4) reduced order calculations of unsteady viscous flows associated with cascade stall flutter, 5) flutter analysis using the Reduced Order Model. The presentation will include our most recent results including the use of A-one Orthogonal Decomposition as an alternative or complement to eigenmodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信