{"title":"记录和重放惯性信号,用于定位服务的环内测试","authors":"I. Partzsch, G. Forster, O. Michler","doi":"10.1109/INERTIALSENSORS.2014.7049407","DOIUrl":null,"url":null,"abstract":"Inertial signals, that is to say accelerations, vibrations and rotations, are gaining more and more importance in navigation applications as they may contribute to motion state estimation. Such motion states may also assist navigation processes in finding a stable navigation solution. Prior to the market introduction of such navigation applications or other Location Based Services (LBS), a variety of tests has to be carried out. As tests in real traffic systems are time consuming and neither repeatable nor representative, it is desirable to create a laboratory environment in which navigation signals and the whole usage process are reproducible. Thereby, standardised navigation scenarios can be simulated repeatedly including all relevant navigation (GNSS, Wi-Fi, INS) and communication (GSM, protocol data) signals. This conference contribution focuses on the recording and replaying of low-frequency (LF)-signals as a basis for reproducible laboratory tests for inertial signals. The signals can be recorded by high-precision sensors and replayed in a laboratory. The paper will present the technical set-up for such reproducible tests and how those tests will be realised in the context of the BMWi-funded project NADINE. Within this project, a ticket-sensitive door-to-door navigation will be developed using a hybrid localisation approach which combines GNSS, Wi-Fi, and inertial signals.","PeriodicalId":371540,"journal":{"name":"2014 DGON Inertial Sensors and Systems (ISS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Record and playback of inertial signals for in-the-loop testing of location based services\",\"authors\":\"I. Partzsch, G. Forster, O. Michler\",\"doi\":\"10.1109/INERTIALSENSORS.2014.7049407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inertial signals, that is to say accelerations, vibrations and rotations, are gaining more and more importance in navigation applications as they may contribute to motion state estimation. Such motion states may also assist navigation processes in finding a stable navigation solution. Prior to the market introduction of such navigation applications or other Location Based Services (LBS), a variety of tests has to be carried out. As tests in real traffic systems are time consuming and neither repeatable nor representative, it is desirable to create a laboratory environment in which navigation signals and the whole usage process are reproducible. Thereby, standardised navigation scenarios can be simulated repeatedly including all relevant navigation (GNSS, Wi-Fi, INS) and communication (GSM, protocol data) signals. This conference contribution focuses on the recording and replaying of low-frequency (LF)-signals as a basis for reproducible laboratory tests for inertial signals. The signals can be recorded by high-precision sensors and replayed in a laboratory. The paper will present the technical set-up for such reproducible tests and how those tests will be realised in the context of the BMWi-funded project NADINE. Within this project, a ticket-sensitive door-to-door navigation will be developed using a hybrid localisation approach which combines GNSS, Wi-Fi, and inertial signals.\",\"PeriodicalId\":371540,\"journal\":{\"name\":\"2014 DGON Inertial Sensors and Systems (ISS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 DGON Inertial Sensors and Systems (ISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INERTIALSENSORS.2014.7049407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 DGON Inertial Sensors and Systems (ISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIALSENSORS.2014.7049407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Record and playback of inertial signals for in-the-loop testing of location based services
Inertial signals, that is to say accelerations, vibrations and rotations, are gaining more and more importance in navigation applications as they may contribute to motion state estimation. Such motion states may also assist navigation processes in finding a stable navigation solution. Prior to the market introduction of such navigation applications or other Location Based Services (LBS), a variety of tests has to be carried out. As tests in real traffic systems are time consuming and neither repeatable nor representative, it is desirable to create a laboratory environment in which navigation signals and the whole usage process are reproducible. Thereby, standardised navigation scenarios can be simulated repeatedly including all relevant navigation (GNSS, Wi-Fi, INS) and communication (GSM, protocol data) signals. This conference contribution focuses on the recording and replaying of low-frequency (LF)-signals as a basis for reproducible laboratory tests for inertial signals. The signals can be recorded by high-precision sensors and replayed in a laboratory. The paper will present the technical set-up for such reproducible tests and how those tests will be realised in the context of the BMWi-funded project NADINE. Within this project, a ticket-sensitive door-to-door navigation will be developed using a hybrid localisation approach which combines GNSS, Wi-Fi, and inertial signals.