图像处理中的高阶光谱

Salwa Lagdali, M. Rziza
{"title":"图像处理中的高阶光谱","authors":"Salwa Lagdali, M. Rziza","doi":"10.1109/ATSIP.2017.8075553","DOIUrl":null,"url":null,"abstract":"Higher order spectra are very useful in problems where either non Gaussianity, noise and non linearities are important. These properties are proved to be present in natural images. This yield higher order spectra and especially the third order, namely the bispectrum, to be an interesting tool in image processing. This paper presents higher order spectra in signal processing and their extension and applications to image processing, where the images are proved to be non Gaussian and non linear.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Higher order spectra in image processing\",\"authors\":\"Salwa Lagdali, M. Rziza\",\"doi\":\"10.1109/ATSIP.2017.8075553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher order spectra are very useful in problems where either non Gaussianity, noise and non linearities are important. These properties are proved to be present in natural images. This yield higher order spectra and especially the third order, namely the bispectrum, to be an interesting tool in image processing. This paper presents higher order spectra in signal processing and their extension and applications to image processing, where the images are proved to be non Gaussian and non linear.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高阶谱在非高斯性、噪声和非线性问题中非常有用。这些性质已被证明存在于自然图像中。这产生了高阶光谱,特别是三阶,即双谱,是图像处理中的一个有趣的工具。本文介绍了高阶谱在信号处理中的应用及其在图像处理中的推广和应用,证明了图像是非高斯和非线性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher order spectra in image processing
Higher order spectra are very useful in problems where either non Gaussianity, noise and non linearities are important. These properties are proved to be present in natural images. This yield higher order spectra and especially the third order, namely the bispectrum, to be an interesting tool in image processing. This paper presents higher order spectra in signal processing and their extension and applications to image processing, where the images are proved to be non Gaussian and non linear.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信