Felix Bartusch, Maximilian Hanussek, Jens Krüger, O. Kohlbacher
{"title":"用于高性能和云计算的可重复科学工作流","authors":"Felix Bartusch, Maximilian Hanussek, Jens Krüger, O. Kohlbacher","doi":"10.1109/CCGRID.2019.00028","DOIUrl":null,"url":null,"abstract":"Many complex data analysis tasks are performed by scientific workflows and pipelines deployed on high performance computing (HPC) or cloud computing resources. The complex software stack required by a workflow and unnoticed dependencies can make the deployment of a pipeline a demanding task. Once deployed, workflows tend to be black boxes, especially for users that did not create the pipeline themselves. At the end of a project a researcher should archive the pipeline in order to ensure reproducibility of published results. This paper illustrates a possible solution for each of the three tasks: reproducible deployment via software containers, automated generation of provenance information to break black boxes, and using the CiTAR service for archiving software containers.","PeriodicalId":234571,"journal":{"name":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reproducible Scientific Workflows for High Performance and Cloud Computing\",\"authors\":\"Felix Bartusch, Maximilian Hanussek, Jens Krüger, O. Kohlbacher\",\"doi\":\"10.1109/CCGRID.2019.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many complex data analysis tasks are performed by scientific workflows and pipelines deployed on high performance computing (HPC) or cloud computing resources. The complex software stack required by a workflow and unnoticed dependencies can make the deployment of a pipeline a demanding task. Once deployed, workflows tend to be black boxes, especially for users that did not create the pipeline themselves. At the end of a project a researcher should archive the pipeline in order to ensure reproducibility of published results. This paper illustrates a possible solution for each of the three tasks: reproducible deployment via software containers, automated generation of provenance information to break black boxes, and using the CiTAR service for archiving software containers.\",\"PeriodicalId\":234571,\"journal\":{\"name\":\"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2019.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2019.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reproducible Scientific Workflows for High Performance and Cloud Computing
Many complex data analysis tasks are performed by scientific workflows and pipelines deployed on high performance computing (HPC) or cloud computing resources. The complex software stack required by a workflow and unnoticed dependencies can make the deployment of a pipeline a demanding task. Once deployed, workflows tend to be black boxes, especially for users that did not create the pipeline themselves. At the end of a project a researcher should archive the pipeline in order to ensure reproducibility of published results. This paper illustrates a possible solution for each of the three tasks: reproducible deployment via software containers, automated generation of provenance information to break black boxes, and using the CiTAR service for archiving software containers.