具有扩展模式匹配和子类型的ML

L. Jagadeesan, John C. Mitchell
{"title":"具有扩展模式匹配和子类型的ML","authors":"L. Jagadeesan, John C. Mitchell","doi":"10.1145/62678.62702","DOIUrl":null,"url":null,"abstract":"We extend a fragment of the programming language Standard ML by incorporating a more general form of record pattern matching and providing for user-declared subtypes. Together, these two enhancements may be used to support a restricted object-oriented programming style. In keeping with the framework of Standard ML, we present typing rules for the language, and develop an efficient type inference algorithm. We prove that the algorithm is sound with respect to the typing rules, and that it infers a most general typing for every typable expression.","PeriodicalId":119710,"journal":{"name":"Proceedings of the 1988 ACM conference on LISP and functional programming","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"ML with extended pattern matching and subtypes\",\"authors\":\"L. Jagadeesan, John C. Mitchell\",\"doi\":\"10.1145/62678.62702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend a fragment of the programming language Standard ML by incorporating a more general form of record pattern matching and providing for user-declared subtypes. Together, these two enhancements may be used to support a restricted object-oriented programming style. In keeping with the framework of Standard ML, we present typing rules for the language, and develop an efficient type inference algorithm. We prove that the algorithm is sound with respect to the typing rules, and that it infers a most general typing for every typable expression.\",\"PeriodicalId\":119710,\"journal\":{\"name\":\"Proceedings of the 1988 ACM conference on LISP and functional programming\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1988 ACM conference on LISP and functional programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/62678.62702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1988 ACM conference on LISP and functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/62678.62702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

我们通过合并更通用的记录模式匹配形式和提供用户声明的子类型,扩展了编程语言Standard ML的一部分。这两个增强可以一起用于支持受限的面向对象编程风格。在符合标准机器学习框架的基础上,提出了该语言的类型规则,并开发了一种高效的类型推断算法。我们证明了该算法在类型化规则方面是可靠的,并且它为每个可类型化表达式推导出最一般的类型化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ML with extended pattern matching and subtypes
We extend a fragment of the programming language Standard ML by incorporating a more general form of record pattern matching and providing for user-declared subtypes. Together, these two enhancements may be used to support a restricted object-oriented programming style. In keeping with the framework of Standard ML, we present typing rules for the language, and develop an efficient type inference algorithm. We prove that the algorithm is sound with respect to the typing rules, and that it infers a most general typing for every typable expression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信