{"title":"用新型MEMS器件测试微触点性能","authors":"S. Bromley, B. Nelson","doi":"10.1109/HOLM.2001.953199","DOIUrl":null,"url":null,"abstract":"Most practical MEMS actuators generate forces ranging from several micronewrons to one or two millinewtons. In order to explore the feasibility of low-resistance contacts for MEMS relays, we explored the force-resistance relationship for gold-gold microfabricated contacts. The effect of apparent contact area on resistance has also been examined for areas between 10 and 90,000 /spl mu/m/sup 2/. The force/resistance relationship of these fully-microfabricated flat microcontacts correlates well with traditional theory and previous experimental results. The average measured resistance varied between 20.5 m/spl Omega/ and 62.9 m/spl Omega/. Decreasing contact area and contact force lead to higher overall contact resistance. However, reducing the apparent contact area by orders of magnitude only had a marginal effect on the overall contact resistance, even when the apparent contact area was orders of magnitude less than the theoretical actual contact area (/spl pi/r/sub c//sup 2/). Furthermore, the force required for a stable microcontact was determined to be below 0.6 mN and therefore within the force range of a MEMS actuator.","PeriodicalId":136044,"journal":{"name":"Proceedings of the Forth-Seventh IEEE Holm Conference on Electrical Contacts (IEEE Cat. No.01CH37192)","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Performance of microcontacts tested with a novel MEMS device\",\"authors\":\"S. Bromley, B. Nelson\",\"doi\":\"10.1109/HOLM.2001.953199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most practical MEMS actuators generate forces ranging from several micronewrons to one or two millinewtons. In order to explore the feasibility of low-resistance contacts for MEMS relays, we explored the force-resistance relationship for gold-gold microfabricated contacts. The effect of apparent contact area on resistance has also been examined for areas between 10 and 90,000 /spl mu/m/sup 2/. The force/resistance relationship of these fully-microfabricated flat microcontacts correlates well with traditional theory and previous experimental results. The average measured resistance varied between 20.5 m/spl Omega/ and 62.9 m/spl Omega/. Decreasing contact area and contact force lead to higher overall contact resistance. However, reducing the apparent contact area by orders of magnitude only had a marginal effect on the overall contact resistance, even when the apparent contact area was orders of magnitude less than the theoretical actual contact area (/spl pi/r/sub c//sup 2/). Furthermore, the force required for a stable microcontact was determined to be below 0.6 mN and therefore within the force range of a MEMS actuator.\",\"PeriodicalId\":136044,\"journal\":{\"name\":\"Proceedings of the Forth-Seventh IEEE Holm Conference on Electrical Contacts (IEEE Cat. No.01CH37192)\",\"volume\":\"04 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Forth-Seventh IEEE Holm Conference on Electrical Contacts (IEEE Cat. No.01CH37192)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOLM.2001.953199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Forth-Seventh IEEE Holm Conference on Electrical Contacts (IEEE Cat. No.01CH37192)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOLM.2001.953199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance of microcontacts tested with a novel MEMS device
Most practical MEMS actuators generate forces ranging from several micronewrons to one or two millinewtons. In order to explore the feasibility of low-resistance contacts for MEMS relays, we explored the force-resistance relationship for gold-gold microfabricated contacts. The effect of apparent contact area on resistance has also been examined for areas between 10 and 90,000 /spl mu/m/sup 2/. The force/resistance relationship of these fully-microfabricated flat microcontacts correlates well with traditional theory and previous experimental results. The average measured resistance varied between 20.5 m/spl Omega/ and 62.9 m/spl Omega/. Decreasing contact area and contact force lead to higher overall contact resistance. However, reducing the apparent contact area by orders of magnitude only had a marginal effect on the overall contact resistance, even when the apparent contact area was orders of magnitude less than the theoretical actual contact area (/spl pi/r/sub c//sup 2/). Furthermore, the force required for a stable microcontact was determined to be below 0.6 mN and therefore within the force range of a MEMS actuator.