{"title":"K-Cipher的差分密码分析","authors":"M. Mahzoun, L. Kraleva, R. Posteuca, T. Ashur","doi":"10.1109/ISCC55528.2022.9912926","DOIUrl":null,"url":null,"abstract":"K-Cipher is an ultra low latency block cipher with variable-length parameters designed by Intel Labs. In this work, we analyze the security of K-Cipher and propose a differential cryptanalysis attack with the complexity of $2^{29.7}$ for a variant of K-Cipher with state size $n=24$ bits state and block size $m=8$ bits. Our attack recovers the secret key and secret randomizer values with a total length of 240 bits in $\\sim 30$ minutes on a standard desktop machine. We show that it is possible to extend the same attack for an arbitrary set of parameters.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Differential Cryptanalysis of K-Cipher\",\"authors\":\"M. Mahzoun, L. Kraleva, R. Posteuca, T. Ashur\",\"doi\":\"10.1109/ISCC55528.2022.9912926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"K-Cipher is an ultra low latency block cipher with variable-length parameters designed by Intel Labs. In this work, we analyze the security of K-Cipher and propose a differential cryptanalysis attack with the complexity of $2^{29.7}$ for a variant of K-Cipher with state size $n=24$ bits state and block size $m=8$ bits. Our attack recovers the secret key and secret randomizer values with a total length of 240 bits in $\\\\sim 30$ minutes on a standard desktop machine. We show that it is possible to extend the same attack for an arbitrary set of parameters.\",\"PeriodicalId\":309606,\"journal\":{\"name\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC55528.2022.9912926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
K-Cipher is an ultra low latency block cipher with variable-length parameters designed by Intel Labs. In this work, we analyze the security of K-Cipher and propose a differential cryptanalysis attack with the complexity of $2^{29.7}$ for a variant of K-Cipher with state size $n=24$ bits state and block size $m=8$ bits. Our attack recovers the secret key and secret randomizer values with a total length of 240 bits in $\sim 30$ minutes on a standard desktop machine. We show that it is possible to extend the same attack for an arbitrary set of parameters.