{"title":"全张量计算方式:一次密集三维结构光及以上","authors":"Xuan-Li Chen, Luc Van Gool","doi":"10.1049/ccs.2019.0027","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Tensor computation evolves fast towards a prosperous existence in recent years, e.g. PyTorch. An immediate advantage of using tensor computation is that one does not need to implement low-level parallelism to attain efficient computation, which is of simplicity for both research and application development. The authors began with discovering that a simple manoeuvre ‘tensor shift’ could perform neighbourhood manipulation in very efficient parallel manner. Based on ‘tensor shift’, they derive the tensor version of a renowned correspondence search algorithm: semi-global matching (SGM), which they prefix the name as tensor-SGM. To evaluate their idea, they build-up a novel and practical one-shot structured light 3D acquisition system, which yields state-of-art reconstruction results using off-the-shelf hardware. This is the first fully tensorised 3D reconstruction system published to the authors’ best knowledge, and it opens new possibilities. A major one is, in the same tensorised framework, they solved the pattern interfering problem which hinders multi-structured light systems from working together. This part is marked as ‘beyond’ in this study to avoid confusing the readers the spotlight: the fully tensorised 3D structured light framework.</p>\n </div>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"2 4","pages":"262-272"},"PeriodicalIF":1.2000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs.2019.0027","citationCount":"0","resultStr":"{\"title\":\"Fully in tensor computation manner: one-shot dense 3D structured light and beyond\",\"authors\":\"Xuan-Li Chen, Luc Van Gool\",\"doi\":\"10.1049/ccs.2019.0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Tensor computation evolves fast towards a prosperous existence in recent years, e.g. PyTorch. An immediate advantage of using tensor computation is that one does not need to implement low-level parallelism to attain efficient computation, which is of simplicity for both research and application development. The authors began with discovering that a simple manoeuvre ‘tensor shift’ could perform neighbourhood manipulation in very efficient parallel manner. Based on ‘tensor shift’, they derive the tensor version of a renowned correspondence search algorithm: semi-global matching (SGM), which they prefix the name as tensor-SGM. To evaluate their idea, they build-up a novel and practical one-shot structured light 3D acquisition system, which yields state-of-art reconstruction results using off-the-shelf hardware. This is the first fully tensorised 3D reconstruction system published to the authors’ best knowledge, and it opens new possibilities. A major one is, in the same tensorised framework, they solved the pattern interfering problem which hinders multi-structured light systems from working together. This part is marked as ‘beyond’ in this study to avoid confusing the readers the spotlight: the fully tensorised 3D structured light framework.</p>\\n </div>\",\"PeriodicalId\":33652,\"journal\":{\"name\":\"Cognitive Computation and Systems\",\"volume\":\"2 4\",\"pages\":\"262-272\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs.2019.0027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ccs.2019.0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs.2019.0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Fully in tensor computation manner: one-shot dense 3D structured light and beyond
Tensor computation evolves fast towards a prosperous existence in recent years, e.g. PyTorch. An immediate advantage of using tensor computation is that one does not need to implement low-level parallelism to attain efficient computation, which is of simplicity for both research and application development. The authors began with discovering that a simple manoeuvre ‘tensor shift’ could perform neighbourhood manipulation in very efficient parallel manner. Based on ‘tensor shift’, they derive the tensor version of a renowned correspondence search algorithm: semi-global matching (SGM), which they prefix the name as tensor-SGM. To evaluate their idea, they build-up a novel and practical one-shot structured light 3D acquisition system, which yields state-of-art reconstruction results using off-the-shelf hardware. This is the first fully tensorised 3D reconstruction system published to the authors’ best knowledge, and it opens new possibilities. A major one is, in the same tensorised framework, they solved the pattern interfering problem which hinders multi-structured light systems from working together. This part is marked as ‘beyond’ in this study to avoid confusing the readers the spotlight: the fully tensorised 3D structured light framework.