{"title":"用遗传算法最小化多值多阈值感知器","authors":"A. Ngom, I. Stojmenovic, Z. Obradovic","doi":"10.1109/ISMVL.1998.679434","DOIUrl":null,"url":null,"abstract":"We address the problem of computing and learning multivalued multithreshold perceptrons. Every n-input X-valued logic function can be implemented using a (k, s)-perceptron, for some number of thresholds s. We propose a genetic algorithm to search for an optimal (k, s)-perceptron that efficiently realizes a given multiple-valued logic function, that is to minimize the number of thresholds. Experimental results show that the genetic algorithm find optimal solutions in most cases.","PeriodicalId":377860,"journal":{"name":"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Minimization of multivalued multithreshold perceptrons using genetic algorithms\",\"authors\":\"A. Ngom, I. Stojmenovic, Z. Obradovic\",\"doi\":\"10.1109/ISMVL.1998.679434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of computing and learning multivalued multithreshold perceptrons. Every n-input X-valued logic function can be implemented using a (k, s)-perceptron, for some number of thresholds s. We propose a genetic algorithm to search for an optimal (k, s)-perceptron that efficiently realizes a given multiple-valued logic function, that is to minimize the number of thresholds. Experimental results show that the genetic algorithm find optimal solutions in most cases.\",\"PeriodicalId\":377860,\"journal\":{\"name\":\"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1998.679434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1998.679434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimization of multivalued multithreshold perceptrons using genetic algorithms
We address the problem of computing and learning multivalued multithreshold perceptrons. Every n-input X-valued logic function can be implemented using a (k, s)-perceptron, for some number of thresholds s. We propose a genetic algorithm to search for an optimal (k, s)-perceptron that efficiently realizes a given multiple-valued logic function, that is to minimize the number of thresholds. Experimental results show that the genetic algorithm find optimal solutions in most cases.