用遗传算法最小化多值多阈值感知器

A. Ngom, I. Stojmenovic, Z. Obradovic
{"title":"用遗传算法最小化多值多阈值感知器","authors":"A. Ngom, I. Stojmenovic, Z. Obradovic","doi":"10.1109/ISMVL.1998.679434","DOIUrl":null,"url":null,"abstract":"We address the problem of computing and learning multivalued multithreshold perceptrons. Every n-input X-valued logic function can be implemented using a (k, s)-perceptron, for some number of thresholds s. We propose a genetic algorithm to search for an optimal (k, s)-perceptron that efficiently realizes a given multiple-valued logic function, that is to minimize the number of thresholds. Experimental results show that the genetic algorithm find optimal solutions in most cases.","PeriodicalId":377860,"journal":{"name":"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Minimization of multivalued multithreshold perceptrons using genetic algorithms\",\"authors\":\"A. Ngom, I. Stojmenovic, Z. Obradovic\",\"doi\":\"10.1109/ISMVL.1998.679434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of computing and learning multivalued multithreshold perceptrons. Every n-input X-valued logic function can be implemented using a (k, s)-perceptron, for some number of thresholds s. We propose a genetic algorithm to search for an optimal (k, s)-perceptron that efficiently realizes a given multiple-valued logic function, that is to minimize the number of thresholds. Experimental results show that the genetic algorithm find optimal solutions in most cases.\",\"PeriodicalId\":377860,\"journal\":{\"name\":\"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1998.679434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1998.679434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们解决了计算和学习多值多阈值感知器的问题。对于一定数量的阈值,每个n输入的x值逻辑函数都可以使用(k, s)感知器来实现。我们提出了一种遗传算法来搜索最优的(k, s)感知器,该感知器可以有效地实现给定的多值逻辑函数,即最小化阈值的数量。实验结果表明,遗传算法在大多数情况下都能找到最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimization of multivalued multithreshold perceptrons using genetic algorithms
We address the problem of computing and learning multivalued multithreshold perceptrons. Every n-input X-valued logic function can be implemented using a (k, s)-perceptron, for some number of thresholds s. We propose a genetic algorithm to search for an optimal (k, s)-perceptron that efficiently realizes a given multiple-valued logic function, that is to minimize the number of thresholds. Experimental results show that the genetic algorithm find optimal solutions in most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信