M. Halls, D. Giesen, Thomas Hughes, A. Goldberg, Yixiang X. Cao, H. Kwak, J. Gavartin
{"title":"OLED材料的虚拟筛选","authors":"M. Halls, D. Giesen, Thomas Hughes, A. Goldberg, Yixiang X. Cao, H. Kwak, J. Gavartin","doi":"10.1117/12.2066565","DOIUrl":null,"url":null,"abstract":"Organic light-emitting diodes (OLEDs) are under widespread investigation to displace or complement inorganic optoelectronic devices for solid-state lighting and active displays. The materials comprising the active layers in OLED devices are selected or designed to provide the required intrinsic and extrinsic electronic properties needed for efficient charge injection and transport, and desired stability and emissive properties. The chemical design space for OLED materials is enormous and there is need for the development of computational approaches to help identify the most promising chemical solutions for experimental development. In this work we present a multi-scale simulation approach to efficiently screen libraries of potential OLED molecular materials. The workflow to assess potential OLED materials is: 1) evaluation based on first-principles prediction of key intrinsic properties (EHOMO, ELUMO, λe/h, Etriplet), 2) classical simulation of thin film morphology (RDF, ρ), and 3) first-principles evaluation of electron coupling for donor-acceptor pairs (Hab) from the simulated condensed phase morphology.","PeriodicalId":358951,"journal":{"name":"Optics & Photonics - Photonic Devices + Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Virtual screening for OLED materials\",\"authors\":\"M. Halls, D. Giesen, Thomas Hughes, A. Goldberg, Yixiang X. Cao, H. Kwak, J. Gavartin\",\"doi\":\"10.1117/12.2066565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic light-emitting diodes (OLEDs) are under widespread investigation to displace or complement inorganic optoelectronic devices for solid-state lighting and active displays. The materials comprising the active layers in OLED devices are selected or designed to provide the required intrinsic and extrinsic electronic properties needed for efficient charge injection and transport, and desired stability and emissive properties. The chemical design space for OLED materials is enormous and there is need for the development of computational approaches to help identify the most promising chemical solutions for experimental development. In this work we present a multi-scale simulation approach to efficiently screen libraries of potential OLED molecular materials. The workflow to assess potential OLED materials is: 1) evaluation based on first-principles prediction of key intrinsic properties (EHOMO, ELUMO, λe/h, Etriplet), 2) classical simulation of thin film morphology (RDF, ρ), and 3) first-principles evaluation of electron coupling for donor-acceptor pairs (Hab) from the simulated condensed phase morphology.\",\"PeriodicalId\":358951,\"journal\":{\"name\":\"Optics & Photonics - Photonic Devices + Applications\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics & Photonics - Photonic Devices + Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2066565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Photonics - Photonic Devices + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2066565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Organic light-emitting diodes (OLEDs) are under widespread investigation to displace or complement inorganic optoelectronic devices for solid-state lighting and active displays. The materials comprising the active layers in OLED devices are selected or designed to provide the required intrinsic and extrinsic electronic properties needed for efficient charge injection and transport, and desired stability and emissive properties. The chemical design space for OLED materials is enormous and there is need for the development of computational approaches to help identify the most promising chemical solutions for experimental development. In this work we present a multi-scale simulation approach to efficiently screen libraries of potential OLED molecular materials. The workflow to assess potential OLED materials is: 1) evaluation based on first-principles prediction of key intrinsic properties (EHOMO, ELUMO, λe/h, Etriplet), 2) classical simulation of thin film morphology (RDF, ρ), and 3) first-principles evaluation of electron coupling for donor-acceptor pairs (Hab) from the simulated condensed phase morphology.