充电电动汽车直接功率控制设计:一种基于被动的控制方法

O. Montoya, W. Gil-González, F. Serra, J. Dominguez, J. Campillo, J. C. Hernández
{"title":"充电电动汽车直接功率控制设计:一种基于被动的控制方法","authors":"O. Montoya, W. Gil-González, F. Serra, J. Dominguez, J. Campillo, J. C. Hernández","doi":"10.1109/ROPEC50909.2020.9258690","DOIUrl":null,"url":null,"abstract":"This paper explores the controller's design for charging batteries for electric vehicle applications using the direct power representation of the system. These controllers' design is made via passivity-based control (PBC) theory by considering the open-loop port-Hamiltonian representation of the converter. The usage of PBC theory allows designing controllers for closed-loop operation, guaranteeing stability operation in the sense of Lyapunov. Two different PBC methods are explored in this contribution; these are i) interconnection and damping assignment PBC, and ii) proportional-integral design. These methods work over the system's incremental model for reaching a control law that ensures asymptotic stability. Numerical validations show that both controllers allow controlling active and reactive power independently in four-quadrants. This is important due to allow using batteries as dynamic energy compensators if it is needed. All the simulations are conducted in MATLAB simulink via SymPowerSystems library.","PeriodicalId":177447,"journal":{"name":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Direct Power Control Design for Charging Electric Vehicles: A Passivity-Based Control Approach\",\"authors\":\"O. Montoya, W. Gil-González, F. Serra, J. Dominguez, J. Campillo, J. C. Hernández\",\"doi\":\"10.1109/ROPEC50909.2020.9258690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the controller's design for charging batteries for electric vehicle applications using the direct power representation of the system. These controllers' design is made via passivity-based control (PBC) theory by considering the open-loop port-Hamiltonian representation of the converter. The usage of PBC theory allows designing controllers for closed-loop operation, guaranteeing stability operation in the sense of Lyapunov. Two different PBC methods are explored in this contribution; these are i) interconnection and damping assignment PBC, and ii) proportional-integral design. These methods work over the system's incremental model for reaching a control law that ensures asymptotic stability. Numerical validations show that both controllers allow controlling active and reactive power independently in four-quadrants. This is important due to allow using batteries as dynamic energy compensators if it is needed. All the simulations are conducted in MATLAB simulink via SymPowerSystems library.\",\"PeriodicalId\":177447,\"journal\":{\"name\":\"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC50909.2020.9258690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC50909.2020.9258690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文探讨了使用系统直接功率表示的电动汽车电池充电控制器的设计。这些控制器的设计是基于无源控制(PBC)理论,并考虑了变换器的开环端口-哈密顿表示。利用PBC理论可以设计闭环操作的控制器,保证李亚普诺夫意义上的稳定运行。本文探讨了两种不同的PBC方法;它们是i)互连和阻尼分配PBC,以及ii)比例积分设计。这些方法在系统的增量模型上工作,以达到保证渐近稳定的控制律。数值验证表明,两种控制器都可以在四象限内独立控制有功和无功功率。这是重要的,因为允许使用电池作为动态能量补偿,如果需要的话。所有仿真均在MATLAB simulink中通过SymPowerSystems库进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Power Control Design for Charging Electric Vehicles: A Passivity-Based Control Approach
This paper explores the controller's design for charging batteries for electric vehicle applications using the direct power representation of the system. These controllers' design is made via passivity-based control (PBC) theory by considering the open-loop port-Hamiltonian representation of the converter. The usage of PBC theory allows designing controllers for closed-loop operation, guaranteeing stability operation in the sense of Lyapunov. Two different PBC methods are explored in this contribution; these are i) interconnection and damping assignment PBC, and ii) proportional-integral design. These methods work over the system's incremental model for reaching a control law that ensures asymptotic stability. Numerical validations show that both controllers allow controlling active and reactive power independently in four-quadrants. This is important due to allow using batteries as dynamic energy compensators if it is needed. All the simulations are conducted in MATLAB simulink via SymPowerSystems library.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信