模块化颗粒神经网络优化萤火虫算法在虹膜识别中的应用

D. Sánchez, P. Melin, Juan Martín Carpio Valadez, Héctor José Puga Soberanes
{"title":"模块化颗粒神经网络优化萤火虫算法在虹膜识别中的应用","authors":"D. Sánchez, P. Melin, Juan Martín Carpio Valadez, Héctor José Puga Soberanes","doi":"10.1109/IJCNN.2016.7727191","DOIUrl":null,"url":null,"abstract":"In this paper a Modular Neural Network (MNN) with a granular approach optimization is proposed, where a firefly optimization is proposed to design a optimal MNN architecture. The proposed method can perform the optimization of some parameters such as; number of sub modules, percentage of information for the training phase and number of hidden layers (with their respective number of neurons) for each sub module. The proposed method is applied to human recognition based on iris biometrics. A benchmark database is used to prove the efficiency and effectiveness of the proposed method, using as objective function the minimization of the error of recognition.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A firefly algorithm for modular granular neural networks optimization applied to iris recognition\",\"authors\":\"D. Sánchez, P. Melin, Juan Martín Carpio Valadez, Héctor José Puga Soberanes\",\"doi\":\"10.1109/IJCNN.2016.7727191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a Modular Neural Network (MNN) with a granular approach optimization is proposed, where a firefly optimization is proposed to design a optimal MNN architecture. The proposed method can perform the optimization of some parameters such as; number of sub modules, percentage of information for the training phase and number of hidden layers (with their respective number of neurons) for each sub module. The proposed method is applied to human recognition based on iris biometrics. A benchmark database is used to prove the efficiency and effectiveness of the proposed method, using as objective function the minimization of the error of recognition.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种具有粒度优化方法的模块化神经网络(MNN),其中提出了萤火虫优化来设计最优的MNN体系结构。所提出的方法可以对一些参数进行优化,如;每个子模块的子模块数量,训练阶段的信息百分比和隐藏层的数量(以及各自的神经元数量)。将该方法应用于基于虹膜生物特征的人体识别。以最小识别误差为目标函数,利用基准数据库验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A firefly algorithm for modular granular neural networks optimization applied to iris recognition
In this paper a Modular Neural Network (MNN) with a granular approach optimization is proposed, where a firefly optimization is proposed to design a optimal MNN architecture. The proposed method can perform the optimization of some parameters such as; number of sub modules, percentage of information for the training phase and number of hidden layers (with their respective number of neurons) for each sub module. The proposed method is applied to human recognition based on iris biometrics. A benchmark database is used to prove the efficiency and effectiveness of the proposed method, using as objective function the minimization of the error of recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信