Genghang Chen, An Song, Chun-Ju Zhang, Xiao-Fang Liu, Wei-neng Chen, Zhi-hui Zhan, J. Zhong, Jun Zhang, Xiao-Min Hu
{"title":"基于粒子群优化的任意形状聚类数据自动聚类方法","authors":"Genghang Chen, An Song, Chun-Ju Zhang, Xiao-Fang Liu, Wei-neng Chen, Zhi-hui Zhan, J. Zhong, Jun Zhang, Xiao-Min Hu","doi":"10.1109/ICICIP.2016.7885913","DOIUrl":null,"url":null,"abstract":"Recently, partitional clustering approaches based on Evolutionary Algorithms (EAs) have shown promising in solving the data clustering problems. However, with the nearest prototype (NP) rule as the method for decoding, most of them are only suitable for clustering datasets with convex (e.g. hyperspherical) clusters. In this paper, we propose an automatic clustering approach using particle swarm optimization (PSO). A new encoding scheme with a novel decoding method, named the nearest multiple prototypes (NMP) rule, is applied to the PSO-based clustering algorithm to automatically determine an appropriate number of clusters in the procedure of clustering and partition datasets with arbitrary shaped clusters. The algorithm is experimentally validated on both synthetic and real datasets. The results show that the proposed PSO-based approach is very competitive when comparing with two popular clustering algorithms.","PeriodicalId":226381,"journal":{"name":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic clustering approach based on particle swarm optimization for data with arbitrary shaped clusters\",\"authors\":\"Genghang Chen, An Song, Chun-Ju Zhang, Xiao-Fang Liu, Wei-neng Chen, Zhi-hui Zhan, J. Zhong, Jun Zhang, Xiao-Min Hu\",\"doi\":\"10.1109/ICICIP.2016.7885913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, partitional clustering approaches based on Evolutionary Algorithms (EAs) have shown promising in solving the data clustering problems. However, with the nearest prototype (NP) rule as the method for decoding, most of them are only suitable for clustering datasets with convex (e.g. hyperspherical) clusters. In this paper, we propose an automatic clustering approach using particle swarm optimization (PSO). A new encoding scheme with a novel decoding method, named the nearest multiple prototypes (NMP) rule, is applied to the PSO-based clustering algorithm to automatically determine an appropriate number of clusters in the procedure of clustering and partition datasets with arbitrary shaped clusters. The algorithm is experimentally validated on both synthetic and real datasets. The results show that the proposed PSO-based approach is very competitive when comparing with two popular clustering algorithms.\",\"PeriodicalId\":226381,\"journal\":{\"name\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2016.7885913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2016.7885913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic clustering approach based on particle swarm optimization for data with arbitrary shaped clusters
Recently, partitional clustering approaches based on Evolutionary Algorithms (EAs) have shown promising in solving the data clustering problems. However, with the nearest prototype (NP) rule as the method for decoding, most of them are only suitable for clustering datasets with convex (e.g. hyperspherical) clusters. In this paper, we propose an automatic clustering approach using particle swarm optimization (PSO). A new encoding scheme with a novel decoding method, named the nearest multiple prototypes (NMP) rule, is applied to the PSO-based clustering algorithm to automatically determine an appropriate number of clusters in the procedure of clustering and partition datasets with arbitrary shaped clusters. The algorithm is experimentally validated on both synthetic and real datasets. The results show that the proposed PSO-based approach is very competitive when comparing with two popular clustering algorithms.