基于集中式到分布式框架的电源网络物理灾害响应

Pudong Ge, Charalambos Konstantinou, Fei Teng
{"title":"基于集中式到分布式框架的电源网络物理灾害响应","authors":"Pudong Ge, Charalambos Konstantinou, Fei Teng","doi":"10.1109/SmartGridComm51999.2021.9632299","DOIUrl":null,"url":null,"abstract":"This paper proposes a cyber-physical cooperative recovery framework to maintain critical power supply, enhancing power systems resilience under extreme events such as earthquakes and hurricanes. Extreme events can possibly damage critical infrastructure in terms of power supply, on both cyber and physical layers. Microgrid (MG) has been widely recognised as the physical-side response to such blackouts, however, the recovery of cyber side is yet fully investigated, especially the cooperatively recovery of cyber-physical power supply. Therefore, a centralised-to-distributed resilient control framework is designed to maintain the power supply of critical loads. In such resilient control, controller-to-controller (C2C) wireless network is utilised to form the emergency distributed communication without a centralised base station. Owing to the limited reliable bandwidth that can be employed in C2C networks, the inevitable delay is considered in designing a discrete control framework, and the corresponding stability criteria are given quantitatively. Finally, the cyber-physical recovery framework is demonstrated effectively through simulations in MATLAB/Simulink.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cyber-Physical Disaster Response of Power Supply Using a Centralised-to-Distributed Framework\",\"authors\":\"Pudong Ge, Charalambos Konstantinou, Fei Teng\",\"doi\":\"10.1109/SmartGridComm51999.2021.9632299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a cyber-physical cooperative recovery framework to maintain critical power supply, enhancing power systems resilience under extreme events such as earthquakes and hurricanes. Extreme events can possibly damage critical infrastructure in terms of power supply, on both cyber and physical layers. Microgrid (MG) has been widely recognised as the physical-side response to such blackouts, however, the recovery of cyber side is yet fully investigated, especially the cooperatively recovery of cyber-physical power supply. Therefore, a centralised-to-distributed resilient control framework is designed to maintain the power supply of critical loads. In such resilient control, controller-to-controller (C2C) wireless network is utilised to form the emergency distributed communication without a centralised base station. Owing to the limited reliable bandwidth that can be employed in C2C networks, the inevitable delay is considered in designing a discrete control framework, and the corresponding stability criteria are given quantitatively. Finally, the cyber-physical recovery framework is demonstrated effectively through simulations in MATLAB/Simulink.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9632299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种网络物理协同恢复框架,以维持关键电力供应,增强电力系统在地震和飓风等极端事件下的弹性。极端事件可能会在网络和物理层破坏电力供应方面的关键基础设施。微电网(MG)已被广泛认为是对此类停电的物理侧响应,然而,网络侧的恢复尚未得到充分研究,特别是网络-物理电力供应的协同恢复。因此,设计了一个集中式到分布式的弹性控制框架来维持关键负载的电力供应。在这种弹性控制中,利用控制器对控制器(C2C)无线网络,在没有集中基站的情况下形成应急分布式通信。由于C2C网络可使用的可靠带宽有限,在设计离散控制框架时考虑了不可避免的时延,并定量给出了相应的稳定性判据。最后,通过MATLAB/Simulink仿真,对网络物理恢复框架进行了有效的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyber-Physical Disaster Response of Power Supply Using a Centralised-to-Distributed Framework
This paper proposes a cyber-physical cooperative recovery framework to maintain critical power supply, enhancing power systems resilience under extreme events such as earthquakes and hurricanes. Extreme events can possibly damage critical infrastructure in terms of power supply, on both cyber and physical layers. Microgrid (MG) has been widely recognised as the physical-side response to such blackouts, however, the recovery of cyber side is yet fully investigated, especially the cooperatively recovery of cyber-physical power supply. Therefore, a centralised-to-distributed resilient control framework is designed to maintain the power supply of critical loads. In such resilient control, controller-to-controller (C2C) wireless network is utilised to form the emergency distributed communication without a centralised base station. Owing to the limited reliable bandwidth that can be employed in C2C networks, the inevitable delay is considered in designing a discrete control framework, and the corresponding stability criteria are given quantitatively. Finally, the cyber-physical recovery framework is demonstrated effectively through simulations in MATLAB/Simulink.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信