Chimbuko:一个工作流级可扩展的性能跟踪分析工具

S. Ha, Wonyong Jeong, Gyorgy Matyasfalvi, C. Xie, K. Huck, J. Choi, A. Malik, Li Tang, H. V. Dam, Line C. Pouchard, W. Xu, Shinjae Yoo, N. D'Imperio, K. K. Dam
{"title":"Chimbuko:一个工作流级可扩展的性能跟踪分析工具","authors":"S. Ha, Wonyong Jeong, Gyorgy Matyasfalvi, C. Xie, K. Huck, J. Choi, A. Malik, Li Tang, H. V. Dam, Line C. Pouchard, W. Xu, Shinjae Yoo, N. D'Imperio, K. K. Dam","doi":"10.1145/3426462.3426465","DOIUrl":null,"url":null,"abstract":"Due to the sheer volume of data it is typically impractical to analyze the detailed performance of an HPC application running at-scale. While conventional small-scale benchmarking and scaling studies are often sufficient for simple applications, many modern workflow-based applications couple multiple elements with competing resource demands and complex inter-communication patterns for which performance cannot easily be studied in isolation and at small scale. This work discusses Chimbuko, a performance analysis framework that provides real-time, in situ anomaly detection. By focusing specifically on performance anomalies and their origin (aka provenance), data volumes are dramatically reduced without losing necessary details. To the best of our knowledge, Chimbuko is the first online, distributed, and scalable workflow-level performance trace analysis framework. We demonstrate the tool’s usefulness on Oak Ridge National Laboratory’s Summit system.","PeriodicalId":320716,"journal":{"name":"ISAV'20 In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Chimbuko: A Workflow-Level Scalable Performance Trace Analysis Tool\",\"authors\":\"S. Ha, Wonyong Jeong, Gyorgy Matyasfalvi, C. Xie, K. Huck, J. Choi, A. Malik, Li Tang, H. V. Dam, Line C. Pouchard, W. Xu, Shinjae Yoo, N. D'Imperio, K. K. Dam\",\"doi\":\"10.1145/3426462.3426465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the sheer volume of data it is typically impractical to analyze the detailed performance of an HPC application running at-scale. While conventional small-scale benchmarking and scaling studies are often sufficient for simple applications, many modern workflow-based applications couple multiple elements with competing resource demands and complex inter-communication patterns for which performance cannot easily be studied in isolation and at small scale. This work discusses Chimbuko, a performance analysis framework that provides real-time, in situ anomaly detection. By focusing specifically on performance anomalies and their origin (aka provenance), data volumes are dramatically reduced without losing necessary details. To the best of our knowledge, Chimbuko is the first online, distributed, and scalable workflow-level performance trace analysis framework. We demonstrate the tool’s usefulness on Oak Ridge National Laboratory’s Summit system.\",\"PeriodicalId\":320716,\"journal\":{\"name\":\"ISAV'20 In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISAV'20 In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3426462.3426465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISAV'20 In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3426462.3426465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于庞大的数据量,分析大规模运行的HPC应用程序的详细性能通常是不切实际的。传统的小规模基准测试和扩展研究通常足以满足简单应用程序的需求,但许多现代基于工作流的应用程序将具有相互竞争的资源需求和复杂的内部通信模式的多个元素耦合在一起,因此无法单独和小规模地研究其性能。这项工作讨论了Chimbuko,一个性能分析框架,提供实时,现场异常检测。通过特别关注性能异常及其起源(又名出处),数据量大大减少,而不会丢失必要的细节。据我们所知,Chimbuko是第一个在线的、分布式的、可扩展的工作流级性能跟踪分析框架。我们在橡树岭国家实验室的Summit系统上演示了该工具的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chimbuko: A Workflow-Level Scalable Performance Trace Analysis Tool
Due to the sheer volume of data it is typically impractical to analyze the detailed performance of an HPC application running at-scale. While conventional small-scale benchmarking and scaling studies are often sufficient for simple applications, many modern workflow-based applications couple multiple elements with competing resource demands and complex inter-communication patterns for which performance cannot easily be studied in isolation and at small scale. This work discusses Chimbuko, a performance analysis framework that provides real-time, in situ anomaly detection. By focusing specifically on performance anomalies and their origin (aka provenance), data volumes are dramatically reduced without losing necessary details. To the best of our knowledge, Chimbuko is the first online, distributed, and scalable workflow-level performance trace analysis framework. We demonstrate the tool’s usefulness on Oak Ridge National Laboratory’s Summit system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信