卧式微型卡普兰水轮机多学科设计优化

R. Amano, Ahmad I. Abbas, M. Qandil, M. Al-Haddad
{"title":"卧式微型卡普兰水轮机多学科设计优化","authors":"R. Amano, Ahmad I. Abbas, M. Qandil, M. Al-Haddad","doi":"10.1115/gt2019-90509","DOIUrl":null,"url":null,"abstract":"\n This study investigates a performance-based design optimization for a Kaplan hydro turbine at a maximum water head of 2.6 m (8.5 ft), micro-sized horizontal Kaplan turbine with 7.6 cm (3.0 in) diameter that is featured fixed blades to attain the optimum performance for such type and size of hydro turbines. Optimization process includes solving design problems and enhance design development by applying a multi-disciplinary design optimization (MDO) technique. Varying the geometrical parameters of the turbine, i.e., dimensions, number of blades, blade wrap angles, and different rotational speeds (500–3000 RPM) are the relevant proposed disciplines of this study.\n An in-house code is used for optimizing the geometrical parameters of the turbine. A numerical solution that utilizes computational fluid dynamics (CFD) for a 3D, turbulent, transient unsteady and swirl flow is developed using STAR-CCM+ software in conjunction with an experimental setup of a lab-sized closed-loop water system for validation. The performance of the turbine is predicted by evaluating the power output (in watts), mesh independency analysis is also presented for CFD results validation.\n Two multi-simulation matrices were solved by using the high-performance computing (HPC) cluster of the University of Wisconsin-Milwaukee. First matrix includes different number of the blades (3, 4, 5, 6, and 7 blades) over six different rotational speeds (500, 1000, 1500, 2000, 2500, and 3000), while the second matrix includes 121 possible combinations of blade wrap angles starting at 60°-60° (hub-shroud) angle to 110°-110° angle with 5° increment alternated at both sides, the hub and the shroud.","PeriodicalId":105494,"journal":{"name":"Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Disciplinary Design Optimization of a Horizontal Micro Kaplan Hydro Turbine\",\"authors\":\"R. Amano, Ahmad I. Abbas, M. Qandil, M. Al-Haddad\",\"doi\":\"10.1115/gt2019-90509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study investigates a performance-based design optimization for a Kaplan hydro turbine at a maximum water head of 2.6 m (8.5 ft), micro-sized horizontal Kaplan turbine with 7.6 cm (3.0 in) diameter that is featured fixed blades to attain the optimum performance for such type and size of hydro turbines. Optimization process includes solving design problems and enhance design development by applying a multi-disciplinary design optimization (MDO) technique. Varying the geometrical parameters of the turbine, i.e., dimensions, number of blades, blade wrap angles, and different rotational speeds (500–3000 RPM) are the relevant proposed disciplines of this study.\\n An in-house code is used for optimizing the geometrical parameters of the turbine. A numerical solution that utilizes computational fluid dynamics (CFD) for a 3D, turbulent, transient unsteady and swirl flow is developed using STAR-CCM+ software in conjunction with an experimental setup of a lab-sized closed-loop water system for validation. The performance of the turbine is predicted by evaluating the power output (in watts), mesh independency analysis is also presented for CFD results validation.\\n Two multi-simulation matrices were solved by using the high-performance computing (HPC) cluster of the University of Wisconsin-Milwaukee. First matrix includes different number of the blades (3, 4, 5, 6, and 7 blades) over six different rotational speeds (500, 1000, 1500, 2000, 2500, and 3000), while the second matrix includes 121 possible combinations of blade wrap angles starting at 60°-60° (hub-shroud) angle to 110°-110° angle with 5° increment alternated at both sides, the hub and the shroud.\",\"PeriodicalId\":105494,\"journal\":{\"name\":\"Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2019-90509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-90509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究对最大水头为2.6米(8.5英尺)的Kaplan水轮机进行了基于性能的设计优化,直径为7.6厘米(3.0英寸)的微型水平Kaplan水轮机采用了固定叶片,以达到这种类型和尺寸的水轮机的最佳性能。优化过程包括通过应用多学科设计优化(MDO)技术来解决设计问题和提高设计的发展。改变涡轮的几何参数,即尺寸、叶片数量、叶片包角和不同转速(500-3000 RPM)是本研究的相关建议学科。内部代码用于优化涡轮的几何参数。利用STAR-CCM+软件,结合实验室大小的闭环水系统实验装置进行验证,开发了一个利用计算流体动力学(CFD)计算三维湍流、瞬态非定常和旋流的数值解决方案。通过计算输出功率(以瓦为单位)来预测涡轮的性能,并进行网格独立性分析以验证CFD结果。利用威斯康星大学密尔沃基分校的高性能计算(HPC)集群对两个多仿真矩阵进行求解。第一个矩阵包括在六种不同转速(500、1000、1500、2000、2500和3000)下不同数量的叶片(3、4、5、6和7片叶片),而第二个矩阵包括从60°-60°(轮毂-叶冠)角度到110°-110°角度的121种可能的叶片包裹角组合,轮毂和叶冠两侧交替增加5°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Disciplinary Design Optimization of a Horizontal Micro Kaplan Hydro Turbine
This study investigates a performance-based design optimization for a Kaplan hydro turbine at a maximum water head of 2.6 m (8.5 ft), micro-sized horizontal Kaplan turbine with 7.6 cm (3.0 in) diameter that is featured fixed blades to attain the optimum performance for such type and size of hydro turbines. Optimization process includes solving design problems and enhance design development by applying a multi-disciplinary design optimization (MDO) technique. Varying the geometrical parameters of the turbine, i.e., dimensions, number of blades, blade wrap angles, and different rotational speeds (500–3000 RPM) are the relevant proposed disciplines of this study. An in-house code is used for optimizing the geometrical parameters of the turbine. A numerical solution that utilizes computational fluid dynamics (CFD) for a 3D, turbulent, transient unsteady and swirl flow is developed using STAR-CCM+ software in conjunction with an experimental setup of a lab-sized closed-loop water system for validation. The performance of the turbine is predicted by evaluating the power output (in watts), mesh independency analysis is also presented for CFD results validation. Two multi-simulation matrices were solved by using the high-performance computing (HPC) cluster of the University of Wisconsin-Milwaukee. First matrix includes different number of the blades (3, 4, 5, 6, and 7 blades) over six different rotational speeds (500, 1000, 1500, 2000, 2500, and 3000), while the second matrix includes 121 possible combinations of blade wrap angles starting at 60°-60° (hub-shroud) angle to 110°-110° angle with 5° increment alternated at both sides, the hub and the shroud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信