UCS-NT:网络断层扫描的无偏压缩感知框架

H. Mahyar, H. Rabiee, Z. S. Hashemifar
{"title":"UCS-NT:网络断层扫描的无偏压缩感知框架","authors":"H. Mahyar, H. Rabiee, Z. S. Hashemifar","doi":"10.1109/ICASSP.2013.6638518","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of recovering sparse link vectors with network topological constraints that is motivated by network inference and tomography applications. We propose a novel framework called UCS-NT in the context of compressive sensing for sparse recovery in networks. In order to efficiently recover sparse specification of link vectors, we construct a feasible measurement matrix using this framework through connected paths. It is theoretically shown that, only O(k log(n)) path measurements are sufficient for uniquely recovering any k-sparse link vector. Moreover, extensive simulations demonstrate that this framework would converge to an accurate solution for a wide class of networks.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"UCS-NT: An unbiased compressive sensing framework for Network Tomography\",\"authors\":\"H. Mahyar, H. Rabiee, Z. S. Hashemifar\",\"doi\":\"10.1109/ICASSP.2013.6638518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of recovering sparse link vectors with network topological constraints that is motivated by network inference and tomography applications. We propose a novel framework called UCS-NT in the context of compressive sensing for sparse recovery in networks. In order to efficiently recover sparse specification of link vectors, we construct a feasible measurement matrix using this framework through connected paths. It is theoretically shown that, only O(k log(n)) path measurements are sufficient for uniquely recovering any k-sparse link vector. Moreover, extensive simulations demonstrate that this framework would converge to an accurate solution for a wide class of networks.\",\"PeriodicalId\":183968,\"journal\":{\"name\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2013.6638518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文解决了由网络推理和断层扫描应用驱动的具有网络拓扑约束的稀疏链路向量恢复问题。在网络稀疏恢复压缩感知的背景下,我们提出了一个新的框架UCS-NT。为了有效地恢复链路向量的稀疏规范,我们利用该框架通过连通路径构造了一个可行的测量矩阵。从理论上证明,只有O(k log(n))个路径测量足以唯一地恢复任何k-稀疏链接向量。此外,大量的模拟表明,该框架将收敛到广泛的网络类别的精确解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UCS-NT: An unbiased compressive sensing framework for Network Tomography
This paper addresses the problem of recovering sparse link vectors with network topological constraints that is motivated by network inference and tomography applications. We propose a novel framework called UCS-NT in the context of compressive sensing for sparse recovery in networks. In order to efficiently recover sparse specification of link vectors, we construct a feasible measurement matrix using this framework through connected paths. It is theoretically shown that, only O(k log(n)) path measurements are sufficient for uniquely recovering any k-sparse link vector. Moreover, extensive simulations demonstrate that this framework would converge to an accurate solution for a wide class of networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信