{"title":"UCS-NT:网络断层扫描的无偏压缩感知框架","authors":"H. Mahyar, H. Rabiee, Z. S. Hashemifar","doi":"10.1109/ICASSP.2013.6638518","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of recovering sparse link vectors with network topological constraints that is motivated by network inference and tomography applications. We propose a novel framework called UCS-NT in the context of compressive sensing for sparse recovery in networks. In order to efficiently recover sparse specification of link vectors, we construct a feasible measurement matrix using this framework through connected paths. It is theoretically shown that, only O(k log(n)) path measurements are sufficient for uniquely recovering any k-sparse link vector. Moreover, extensive simulations demonstrate that this framework would converge to an accurate solution for a wide class of networks.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"UCS-NT: An unbiased compressive sensing framework for Network Tomography\",\"authors\":\"H. Mahyar, H. Rabiee, Z. S. Hashemifar\",\"doi\":\"10.1109/ICASSP.2013.6638518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of recovering sparse link vectors with network topological constraints that is motivated by network inference and tomography applications. We propose a novel framework called UCS-NT in the context of compressive sensing for sparse recovery in networks. In order to efficiently recover sparse specification of link vectors, we construct a feasible measurement matrix using this framework through connected paths. It is theoretically shown that, only O(k log(n)) path measurements are sufficient for uniquely recovering any k-sparse link vector. Moreover, extensive simulations demonstrate that this framework would converge to an accurate solution for a wide class of networks.\",\"PeriodicalId\":183968,\"journal\":{\"name\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2013.6638518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UCS-NT: An unbiased compressive sensing framework for Network Tomography
This paper addresses the problem of recovering sparse link vectors with network topological constraints that is motivated by network inference and tomography applications. We propose a novel framework called UCS-NT in the context of compressive sensing for sparse recovery in networks. In order to efficiently recover sparse specification of link vectors, we construct a feasible measurement matrix using this framework through connected paths. It is theoretically shown that, only O(k log(n)) path measurements are sufficient for uniquely recovering any k-sparse link vector. Moreover, extensive simulations demonstrate that this framework would converge to an accurate solution for a wide class of networks.