使用k -意为为急性呼吸道感染患者分组。

Friska Selvina Agoestina, Heru Satria Tambunan, Rizki Alfadillah Nasution
{"title":"使用k -意为为急性呼吸道感染患者分组。","authors":"Friska Selvina Agoestina, Heru Satria Tambunan, Rizki Alfadillah Nasution","doi":"10.54259/satesi.v2i1.804","DOIUrl":null,"url":null,"abstract":"This study discusses Acute Respiratory Infections (ARI) at the Bah Biak Health Center. Bah Biak Health Center is one of the health centers in Marihat in Pematangsiantar city. Every day the number of patients who come and perform medical treatment at this health center is quite a lot. The high number of patient visits at this puskesmas causes the amount of medical record data to be very large as well. So far, data containing information about patients at the puskesmas has not been used properly. This information can actually be used as knowledge for puskesmas, especially for patients who have a history of ARI disease. Therefore, the purpose of this study was to classify patients with ARI at the Puskesmas. The method used is K-Means clustering. The results of this study were able to classify ARI patients into 2 clusters, cluster 1 gave a high recommendation of 72 patients, and cluster 2 gave a low recommendation of 70 patients. The cluster process stops at the 5th iteration of data. Based on the manual calculation process using Ms. Excel and testing using Rapidminer 5.3, yielded the same value. It can be concluded that in this case, the K-Means algorithm can classify ARI patients at the Bah Biak health center well.","PeriodicalId":187424,"journal":{"name":"SATESI: Jurnal Sains Teknologi dan Sistem Informasi","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pemanfaatan Algoritma K-Means untuk Pengelompokkan Pasien Penyakit Infeksi Saluran Pernafasan Akut (ISPA)\",\"authors\":\"Friska Selvina Agoestina, Heru Satria Tambunan, Rizki Alfadillah Nasution\",\"doi\":\"10.54259/satesi.v2i1.804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study discusses Acute Respiratory Infections (ARI) at the Bah Biak Health Center. Bah Biak Health Center is one of the health centers in Marihat in Pematangsiantar city. Every day the number of patients who come and perform medical treatment at this health center is quite a lot. The high number of patient visits at this puskesmas causes the amount of medical record data to be very large as well. So far, data containing information about patients at the puskesmas has not been used properly. This information can actually be used as knowledge for puskesmas, especially for patients who have a history of ARI disease. Therefore, the purpose of this study was to classify patients with ARI at the Puskesmas. The method used is K-Means clustering. The results of this study were able to classify ARI patients into 2 clusters, cluster 1 gave a high recommendation of 72 patients, and cluster 2 gave a low recommendation of 70 patients. The cluster process stops at the 5th iteration of data. Based on the manual calculation process using Ms. Excel and testing using Rapidminer 5.3, yielded the same value. It can be concluded that in this case, the K-Means algorithm can classify ARI patients at the Bah Biak health center well.\",\"PeriodicalId\":187424,\"journal\":{\"name\":\"SATESI: Jurnal Sains Teknologi dan Sistem Informasi\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SATESI: Jurnal Sains Teknologi dan Sistem Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54259/satesi.v2i1.804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SATESI: Jurnal Sains Teknologi dan Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54259/satesi.v2i1.804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究讨论了Bah Biak卫生中心的急性呼吸道感染(ARI)。Bah Biak保健中心是Pematangsiantar市Marihat的保健中心之一。每天来这个保健中心看病的病人数量相当多。在这个时间点,大量的病人就诊也导致了大量的医疗记录数据。到目前为止,包含puskesmas患者信息的数据没有得到适当的使用。这些信息实际上可以作为puskesmas的知识,特别是对于有ARI病史的患者。因此,本研究的目的是对Puskesmas的ARI患者进行分类。使用的方法是K-Means聚类。本研究的结果能够将ARI患者分为2组,第1组给出72例高推荐,第2组给出70例低推荐。集群进程在数据的第5次迭代时停止。基于Ms. Excel的人工计算过程和Rapidminer 5.3的测试,得出了相同的值。可以得出结论,在这种情况下,K-Means算法可以很好地对Bah Biak卫生中心的ARI患者进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pemanfaatan Algoritma K-Means untuk Pengelompokkan Pasien Penyakit Infeksi Saluran Pernafasan Akut (ISPA)
This study discusses Acute Respiratory Infections (ARI) at the Bah Biak Health Center. Bah Biak Health Center is one of the health centers in Marihat in Pematangsiantar city. Every day the number of patients who come and perform medical treatment at this health center is quite a lot. The high number of patient visits at this puskesmas causes the amount of medical record data to be very large as well. So far, data containing information about patients at the puskesmas has not been used properly. This information can actually be used as knowledge for puskesmas, especially for patients who have a history of ARI disease. Therefore, the purpose of this study was to classify patients with ARI at the Puskesmas. The method used is K-Means clustering. The results of this study were able to classify ARI patients into 2 clusters, cluster 1 gave a high recommendation of 72 patients, and cluster 2 gave a low recommendation of 70 patients. The cluster process stops at the 5th iteration of data. Based on the manual calculation process using Ms. Excel and testing using Rapidminer 5.3, yielded the same value. It can be concluded that in this case, the K-Means algorithm can classify ARI patients at the Bah Biak health center well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信