生成对抗积量化

Litao Yu, Yongsheng Gao, J. Zhou
{"title":"生成对抗积量化","authors":"Litao Yu, Yongsheng Gao, J. Zhou","doi":"10.1145/3240508.3240590","DOIUrl":null,"url":null,"abstract":"Product Quantisation (PQ) has been recognised as an effective encoding technique for scalable multimedia content analysis. In this paper, we propose a novel learning framework that enables an end-to-end encoding strategy from raw images to compact PQ codes. The system aims to learn both PQ encoding functions and codewords for content-based image retrieval. In detail, we first design a trainable encoding layer that is pluggable into neural networks, so the codewords can be trained in back-forward propagation. Then we integrate it into a Deep Convolutional Generative Adversarial Network (DC-GAN). In our proposed encoding framework, the raw images are directly encoded by passing through the convolutional and encoding layers, and the generator aims to use the codewords as constrained inputs to generate full image representations that are visually similar to the original images. By taking the advantages of the generative adversarial model, our proposed system can produce high-quality PQ codewords and encoding functions for scalable multimedia retrieval tasks. Experiments show that the proposed architecture GA-PQ outperforms the state-of-the-art encoding techniques on three public image datasets.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generative Adversarial Product Quantisation\",\"authors\":\"Litao Yu, Yongsheng Gao, J. Zhou\",\"doi\":\"10.1145/3240508.3240590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Product Quantisation (PQ) has been recognised as an effective encoding technique for scalable multimedia content analysis. In this paper, we propose a novel learning framework that enables an end-to-end encoding strategy from raw images to compact PQ codes. The system aims to learn both PQ encoding functions and codewords for content-based image retrieval. In detail, we first design a trainable encoding layer that is pluggable into neural networks, so the codewords can be trained in back-forward propagation. Then we integrate it into a Deep Convolutional Generative Adversarial Network (DC-GAN). In our proposed encoding framework, the raw images are directly encoded by passing through the convolutional and encoding layers, and the generator aims to use the codewords as constrained inputs to generate full image representations that are visually similar to the original images. By taking the advantages of the generative adversarial model, our proposed system can produce high-quality PQ codewords and encoding functions for scalable multimedia retrieval tasks. Experiments show that the proposed architecture GA-PQ outperforms the state-of-the-art encoding techniques on three public image datasets.\",\"PeriodicalId\":339857,\"journal\":{\"name\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240508.3240590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

产品量化(PQ)已被认为是一种有效的编码技术,用于可扩展的多媒体内容分析。在本文中,我们提出了一种新的学习框架,该框架支持从原始图像到紧凑PQ代码的端到端编码策略。该系统旨在学习基于内容的图像检索的PQ编码函数和码字。具体来说,我们首先设计了一个可训练的编码层,该编码层可插入到神经网络中,因此码字可以在反向传播中进行训练。然后将其集成到深度卷积生成对抗网络(DC-GAN)中。在我们提出的编码框架中,原始图像通过卷积层和编码层直接编码,生成器旨在使用码字作为约束输入来生成视觉上与原始图像相似的完整图像表示。利用生成对抗模型的优势,我们提出的系统可以为可扩展的多媒体检索任务生成高质量的PQ码字和编码函数。实验表明,本文提出的GA-PQ结构在三个公共图像数据集上的编码性能优于目前最先进的编码技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Adversarial Product Quantisation
Product Quantisation (PQ) has been recognised as an effective encoding technique for scalable multimedia content analysis. In this paper, we propose a novel learning framework that enables an end-to-end encoding strategy from raw images to compact PQ codes. The system aims to learn both PQ encoding functions and codewords for content-based image retrieval. In detail, we first design a trainable encoding layer that is pluggable into neural networks, so the codewords can be trained in back-forward propagation. Then we integrate it into a Deep Convolutional Generative Adversarial Network (DC-GAN). In our proposed encoding framework, the raw images are directly encoded by passing through the convolutional and encoding layers, and the generator aims to use the codewords as constrained inputs to generate full image representations that are visually similar to the original images. By taking the advantages of the generative adversarial model, our proposed system can produce high-quality PQ codewords and encoding functions for scalable multimedia retrieval tasks. Experiments show that the proposed architecture GA-PQ outperforms the state-of-the-art encoding techniques on three public image datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信