基于卡尔曼滤波的小容量锂离子电池监测算法的硬件实现

Ines Baccouche, S. Jemmali, B. Manai, Rania Chaibi, Najoua Essoukri Ben Amara
{"title":"基于卡尔曼滤波的小容量锂离子电池监测算法的硬件实现","authors":"Ines Baccouche, S. Jemmali, B. Manai, Rania Chaibi, Najoua Essoukri Ben Amara","doi":"10.1109/IREC.2016.7478930","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an algorithm based on an adaptive Kalman filter algorithm for estimating the state of charge of low capacity Li-ion batteries. Using the first order model with a static characterization, good results have been reached and the algorithm converges even with random initial SoC values and has represented no cumulative error drawbacks. This algorithm has been validated, simulated and implemented on a hardware platform based on a microcontroller for an online SoC estimation for multimedia application.","PeriodicalId":190533,"journal":{"name":"2016 7th International Renewable Energy Congress (IREC)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hardware implementation of an algorithm based on kalman filtrer for monitoring low capacity Li-ion batteries\",\"authors\":\"Ines Baccouche, S. Jemmali, B. Manai, Rania Chaibi, Najoua Essoukri Ben Amara\",\"doi\":\"10.1109/IREC.2016.7478930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce an algorithm based on an adaptive Kalman filter algorithm for estimating the state of charge of low capacity Li-ion batteries. Using the first order model with a static characterization, good results have been reached and the algorithm converges even with random initial SoC values and has represented no cumulative error drawbacks. This algorithm has been validated, simulated and implemented on a hardware platform based on a microcontroller for an online SoC estimation for multimedia application.\",\"PeriodicalId\":190533,\"journal\":{\"name\":\"2016 7th International Renewable Energy Congress (IREC)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Renewable Energy Congress (IREC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IREC.2016.7478930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Renewable Energy Congress (IREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IREC.2016.7478930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了一种基于自适应卡尔曼滤波算法的小容量锂离子电池充电状态估计算法。使用静态表征的一阶模型,取得了良好的结果,即使初始SoC值是随机的,算法也能收敛,并且没有累积误差的缺点。该算法已在基于微控制器的硬件平台上进行了验证、仿真和实现,用于多媒体应用的在线SoC估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware implementation of an algorithm based on kalman filtrer for monitoring low capacity Li-ion batteries
In this paper, we introduce an algorithm based on an adaptive Kalman filter algorithm for estimating the state of charge of low capacity Li-ion batteries. Using the first order model with a static characterization, good results have been reached and the algorithm converges even with random initial SoC values and has represented no cumulative error drawbacks. This algorithm has been validated, simulated and implemented on a hardware platform based on a microcontroller for an online SoC estimation for multimedia application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信