{"title":"支持基因表达分析的本体驱动聚类方法","authors":"Haiying Wang, F. Azuaje, O. Bodenreider","doi":"10.1109/CBMS.2005.29","DOIUrl":null,"url":null,"abstract":"The gene ontology (GO) is an important knowledge resource for biologists and bioinformaticians. This paper explores the integration of similarity information derived from GO into clustering-based gene expression analysis. A system that integrates GO annotations, similarity patterns and expression data in yeast is assessed. In comparison with a clustering model based only on expression data correlation, the proposed framework not only produces consistent results, but also it offers alternative, potentially meaningful views of the biological problem under study. Moreover, it provides the basis for developing other automated, knowledge-driven data mining systems in this and related application areas.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"An ontology-driven clustering method for supporting gene expression analysis\",\"authors\":\"Haiying Wang, F. Azuaje, O. Bodenreider\",\"doi\":\"10.1109/CBMS.2005.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gene ontology (GO) is an important knowledge resource for biologists and bioinformaticians. This paper explores the integration of similarity information derived from GO into clustering-based gene expression analysis. A system that integrates GO annotations, similarity patterns and expression data in yeast is assessed. In comparison with a clustering model based only on expression data correlation, the proposed framework not only produces consistent results, but also it offers alternative, potentially meaningful views of the biological problem under study. Moreover, it provides the basis for developing other automated, knowledge-driven data mining systems in this and related application areas.\",\"PeriodicalId\":119367,\"journal\":{\"name\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2005.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An ontology-driven clustering method for supporting gene expression analysis
The gene ontology (GO) is an important knowledge resource for biologists and bioinformaticians. This paper explores the integration of similarity information derived from GO into clustering-based gene expression analysis. A system that integrates GO annotations, similarity patterns and expression data in yeast is assessed. In comparison with a clustering model based only on expression data correlation, the proposed framework not only produces consistent results, but also it offers alternative, potentially meaningful views of the biological problem under study. Moreover, it provides the basis for developing other automated, knowledge-driven data mining systems in this and related application areas.