支持基因表达分析的本体驱动聚类方法

Haiying Wang, F. Azuaje, O. Bodenreider
{"title":"支持基因表达分析的本体驱动聚类方法","authors":"Haiying Wang, F. Azuaje, O. Bodenreider","doi":"10.1109/CBMS.2005.29","DOIUrl":null,"url":null,"abstract":"The gene ontology (GO) is an important knowledge resource for biologists and bioinformaticians. This paper explores the integration of similarity information derived from GO into clustering-based gene expression analysis. A system that integrates GO annotations, similarity patterns and expression data in yeast is assessed. In comparison with a clustering model based only on expression data correlation, the proposed framework not only produces consistent results, but also it offers alternative, potentially meaningful views of the biological problem under study. Moreover, it provides the basis for developing other automated, knowledge-driven data mining systems in this and related application areas.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"An ontology-driven clustering method for supporting gene expression analysis\",\"authors\":\"Haiying Wang, F. Azuaje, O. Bodenreider\",\"doi\":\"10.1109/CBMS.2005.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gene ontology (GO) is an important knowledge resource for biologists and bioinformaticians. This paper explores the integration of similarity information derived from GO into clustering-based gene expression analysis. A system that integrates GO annotations, similarity patterns and expression data in yeast is assessed. In comparison with a clustering model based only on expression data correlation, the proposed framework not only produces consistent results, but also it offers alternative, potentially meaningful views of the biological problem under study. Moreover, it provides the basis for developing other automated, knowledge-driven data mining systems in this and related application areas.\",\"PeriodicalId\":119367,\"journal\":{\"name\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2005.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

基因本体(GO)是生物学家和生物信息学家的重要知识资源。本文探讨了将GO的相似性信息整合到基于聚类的基因表达分析中。评估了一个集成GO注释、相似模式和酵母表达数据的系统。与仅基于表达数据相关性的聚类模型相比,所提出的框架不仅产生一致的结果,而且还为所研究的生物学问题提供了替代的、潜在的有意义的观点。此外,它还为在此及相关应用领域开发其他自动化、知识驱动的数据挖掘系统提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ontology-driven clustering method for supporting gene expression analysis
The gene ontology (GO) is an important knowledge resource for biologists and bioinformaticians. This paper explores the integration of similarity information derived from GO into clustering-based gene expression analysis. A system that integrates GO annotations, similarity patterns and expression data in yeast is assessed. In comparison with a clustering model based only on expression data correlation, the proposed framework not only produces consistent results, but also it offers alternative, potentially meaningful views of the biological problem under study. Moreover, it provides the basis for developing other automated, knowledge-driven data mining systems in this and related application areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信