AMD gpu上密集线性代数算法的设计、优化和基准测试

Cade Brown, A. Abdelfattah, S. Tomov, J. Dongarra
{"title":"AMD gpu上密集线性代数算法的设计、优化和基准测试","authors":"Cade Brown, A. Abdelfattah, S. Tomov, J. Dongarra","doi":"10.1109/HPEC43674.2020.9286214","DOIUrl":null,"url":null,"abstract":"Dense linear algebra (DLA) has historically been in the vanguard of software that must be adapted first to hardware changes. This is because DLA is both critical to the accuracy and performance of so many different types of applications, and because they have proved to be outstanding vehicles for finding and implementing solutions to the problems that novel architectures pose. Therefore, in this paper we investigate the portability of the MAGMA DLA library to the latest AMD GPUs. We use auto tools to convert the CUDA code in MAGMA to the Heterogeneous-Computing Interface for Portability (HIP) language. MAGMA provides LAPACK for GPUs and benchmarks for fundamental DLA routines ranging from BLAS to dense factorizations, linear systems and eigen-problem solvers. We port these routines to HIP and quantify currently achievable performance through the MAGMA benchmarks for the main workload algorithms on MI25 and MI50 AMD GPUs. Comparison with performance roofline models and theoretical expectations are used to identify current limitations and directions for future improvements.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design, Optimization, and Benchmarking of Dense Linear Algebra Algorithms on AMD GPUs\",\"authors\":\"Cade Brown, A. Abdelfattah, S. Tomov, J. Dongarra\",\"doi\":\"10.1109/HPEC43674.2020.9286214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dense linear algebra (DLA) has historically been in the vanguard of software that must be adapted first to hardware changes. This is because DLA is both critical to the accuracy and performance of so many different types of applications, and because they have proved to be outstanding vehicles for finding and implementing solutions to the problems that novel architectures pose. Therefore, in this paper we investigate the portability of the MAGMA DLA library to the latest AMD GPUs. We use auto tools to convert the CUDA code in MAGMA to the Heterogeneous-Computing Interface for Portability (HIP) language. MAGMA provides LAPACK for GPUs and benchmarks for fundamental DLA routines ranging from BLAS to dense factorizations, linear systems and eigen-problem solvers. We port these routines to HIP and quantify currently achievable performance through the MAGMA benchmarks for the main workload algorithms on MI25 and MI50 AMD GPUs. Comparison with performance roofline models and theoretical expectations are used to identify current limitations and directions for future improvements.\",\"PeriodicalId\":168544,\"journal\":{\"name\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC43674.2020.9286214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

密集线性代数(DLA)在历史上一直是软件的先锋,必须首先适应硬件的变化。这是因为DLA对于许多不同类型的应用程序的准确性和性能都是至关重要的,而且因为它们已经被证明是寻找和实现解决新架构所带来的问题的杰出工具。因此,在本文中,我们研究了MAGMA DLA库对最新AMD gpu的可移植性。我们使用自动工具将MAGMA中的CUDA代码转换为可移植性异构计算接口(HIP)语言。MAGMA为gpu和基本DLA例程(从BLAS到密集分解、线性系统和特征问题求解器)提供LAPACK基准。我们将这些例程移植到HIP,并通过在MI25和MI50 AMD gpu上的主要工作负载算法的MAGMA基准测试来量化当前可实现的性能。通过与性能顶线模型和理论期望的比较,可以确定当前的局限性和未来改进的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, Optimization, and Benchmarking of Dense Linear Algebra Algorithms on AMD GPUs
Dense linear algebra (DLA) has historically been in the vanguard of software that must be adapted first to hardware changes. This is because DLA is both critical to the accuracy and performance of so many different types of applications, and because they have proved to be outstanding vehicles for finding and implementing solutions to the problems that novel architectures pose. Therefore, in this paper we investigate the portability of the MAGMA DLA library to the latest AMD GPUs. We use auto tools to convert the CUDA code in MAGMA to the Heterogeneous-Computing Interface for Portability (HIP) language. MAGMA provides LAPACK for GPUs and benchmarks for fundamental DLA routines ranging from BLAS to dense factorizations, linear systems and eigen-problem solvers. We port these routines to HIP and quantify currently achievable performance through the MAGMA benchmarks for the main workload algorithms on MI25 and MI50 AMD GPUs. Comparison with performance roofline models and theoretical expectations are used to identify current limitations and directions for future improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信