Banach空间值函数的高阶逼近理论

G. Anastassiou
{"title":"Banach空间值函数的高阶逼近理论","authors":"G. Anastassiou","doi":"10.33993/jnaat462-1112","DOIUrl":null,"url":null,"abstract":"Here we study quantitatively the high degree of approximation of sequences of linear operators acting on Banach space valued di§erentiable functions to the unit operator. These operators are bounded by real positive linear companion operators. The Banach spaces considered here are general and no positivity assumption is made on the initial linear operators whose we study their approximation properties. We derive pointwise and uniform estimates which imply the approximation of these operators to the unit assuming di§erentiability of functions. At the end we study the special case where the high order derivative of the on hand function fulÖlls a convexity condition resulting into sharper estimates. \nMR3724631","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High order approximation theory for Banach space valued functions\",\"authors\":\"G. Anastassiou\",\"doi\":\"10.33993/jnaat462-1112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we study quantitatively the high degree of approximation of sequences of linear operators acting on Banach space valued di§erentiable functions to the unit operator. These operators are bounded by real positive linear companion operators. The Banach spaces considered here are general and no positivity assumption is made on the initial linear operators whose we study their approximation properties. We derive pointwise and uniform estimates which imply the approximation of these operators to the unit assuming di§erentiability of functions. At the end we study the special case where the high order derivative of the on hand function fulÖlls a convexity condition resulting into sharper estimates. \\nMR3724631\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat462-1112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat462-1112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文定量地研究了作用于Banach空间值可溯函数的线性算子序列对单位算子的高度逼近性。这些算子由实正线性伴算子限定。本文所考虑的巴拿赫空间是一般的,没有对初始线性算子作正性假设,并研究了它们的逼近性质。我们导出了点估计和一致估计,这些估计暗示了这些算子对假设函数可溯性的单位的逼近。最后,我们研究了一种特殊情况,即左手函数fulÖlls的高阶导数具有凸性条件,从而得到更清晰的估计。MR3724631
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High order approximation theory for Banach space valued functions
Here we study quantitatively the high degree of approximation of sequences of linear operators acting on Banach space valued di§erentiable functions to the unit operator. These operators are bounded by real positive linear companion operators. The Banach spaces considered here are general and no positivity assumption is made on the initial linear operators whose we study their approximation properties. We derive pointwise and uniform estimates which imply the approximation of these operators to the unit assuming di§erentiability of functions. At the end we study the special case where the high order derivative of the on hand function fulÖlls a convexity condition resulting into sharper estimates. MR3724631
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信