基于NCFET的陡峭开关逻辑用于未来的节能电子产品

R. C. Bheemana, A. Japa, S. Yellampalli, R. Vaddi
{"title":"基于NCFET的陡峭开关逻辑用于未来的节能电子产品","authors":"R. C. Bheemana, A. Japa, S. Yellampalli, R. Vaddi","doi":"10.1109/iSES52644.2021.00083","DOIUrl":null,"url":null,"abstract":"Negative capacitance field effect transistor (NCFET) is a promising technology which exhibits lower subthreshold swing (SS) and high ON current beyond the limit of conventional CMOS. However, the lack of design insights and rules make NCFET circuit design challenging. To address this, proposed work discusses several design insights and advantages of NCFET based logic for energy efficient electronics. NCFET device demonstrates enhanced characteristics for logic design with ferroelectric layer thickness $(t_{fe})$ in the range of 3nm to 5nm. At 45nm technology node, NCFET with tfe of 5nm exhibits $1.22\\times$ higher ON current, $66\\times$ lower leakage current and a lower SS (50mV/dec) compared to baseline MOSFET. In addition, NCFET based static complementary inverter exhibited optimum performance with tfe of 3nm. At a supply voltage of 0.5V, NCFET inverter demonstrates $3.3\\times$ lower energy consumption compared to baseline inverter design. Furthermore, NCFET based logic gates (AND, OR, XOR) show at least $3\\times$ lower energy consumption compared to baseline designs at 0.5V.","PeriodicalId":293167,"journal":{"name":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Steep Switching NCFET based Logic for Future Energy Efficient Electronics\",\"authors\":\"R. C. Bheemana, A. Japa, S. Yellampalli, R. Vaddi\",\"doi\":\"10.1109/iSES52644.2021.00083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Negative capacitance field effect transistor (NCFET) is a promising technology which exhibits lower subthreshold swing (SS) and high ON current beyond the limit of conventional CMOS. However, the lack of design insights and rules make NCFET circuit design challenging. To address this, proposed work discusses several design insights and advantages of NCFET based logic for energy efficient electronics. NCFET device demonstrates enhanced characteristics for logic design with ferroelectric layer thickness $(t_{fe})$ in the range of 3nm to 5nm. At 45nm technology node, NCFET with tfe of 5nm exhibits $1.22\\\\times$ higher ON current, $66\\\\times$ lower leakage current and a lower SS (50mV/dec) compared to baseline MOSFET. In addition, NCFET based static complementary inverter exhibited optimum performance with tfe of 3nm. At a supply voltage of 0.5V, NCFET inverter demonstrates $3.3\\\\times$ lower energy consumption compared to baseline inverter design. Furthermore, NCFET based logic gates (AND, OR, XOR) show at least $3\\\\times$ lower energy consumption compared to baseline designs at 0.5V.\",\"PeriodicalId\":293167,\"journal\":{\"name\":\"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSES52644.2021.00083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSES52644.2021.00083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

负电容场效应晶体管(NCFET)具有较低的亚阈值摆幅(SS)和超过传统CMOS极限的高导通电流,是一种很有前途的技术。然而,缺乏设计见解和规则使得NCFET电路设计具有挑战性。为了解决这个问题,建议的工作讨论了基于NCFET的节能电子器件逻辑的几个设计见解和优势。当铁电层厚度$(t_{fe})$在3nm至5nm范围内时,NCFET器件的逻辑设计特性得到了增强。在45nm技术节点,与基线MOSFET相比,tfe为5nm的NCFET的ON电流高1.22倍,漏电流低66倍,SS (50mV/dec)更低。此外,基于NCFET的静态互补逆变器在tfe为3nm时表现出最佳性能。在电源电压为0.5V时,NCFET逆变器的能耗比基准逆变器设计低3.3倍。此外,与0.5V的基准设计相比,基于NCFET的逻辑门(与、或、异或)的能耗至少降低了3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steep Switching NCFET based Logic for Future Energy Efficient Electronics
Negative capacitance field effect transistor (NCFET) is a promising technology which exhibits lower subthreshold swing (SS) and high ON current beyond the limit of conventional CMOS. However, the lack of design insights and rules make NCFET circuit design challenging. To address this, proposed work discusses several design insights and advantages of NCFET based logic for energy efficient electronics. NCFET device demonstrates enhanced characteristics for logic design with ferroelectric layer thickness $(t_{fe})$ in the range of 3nm to 5nm. At 45nm technology node, NCFET with tfe of 5nm exhibits $1.22\times$ higher ON current, $66\times$ lower leakage current and a lower SS (50mV/dec) compared to baseline MOSFET. In addition, NCFET based static complementary inverter exhibited optimum performance with tfe of 3nm. At a supply voltage of 0.5V, NCFET inverter demonstrates $3.3\times$ lower energy consumption compared to baseline inverter design. Furthermore, NCFET based logic gates (AND, OR, XOR) show at least $3\times$ lower energy consumption compared to baseline designs at 0.5V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信